Inflammatory and functional responses after (bio)diesel exhaust exposure in allergic sensitized mice. A comparison between diesel and biodiesel

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Citação
ENVIRONMENTAL POLLUTION, v.253, p.667-679, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Many cities fail to meet air quality standards, which results in increased risk for pulmonary disorders, including asthma. Human and experimental studies have shown that diesel exhaust (DE) particles are associated with worsening of allergic asthma. Biodiesel (BD), a cleaner fuel from renewable sources, was introduced in the eighties. Because of the reduction in particulate matter (PM) emissions, BD was expected to cause fewer adverse pulmonary effects. However, only limited data on the effect of BD emissions in asthma are available. Objective: Determine whether BD exhaust exposure in allergic sensitized mice leads to different effects on inflammatory and functional responses compared to DE exposure. Methods: Balb/C mice were orotracheally sensitized with House Dust Mite (HDM) or a saline solution with 3 weekly instillations. From day 9 until day 17 after sensitization, they were exposed daily to filtered air (FA), DE and BD exhaust (concentration: 600 mu g/m(3) PM2.5). Lung function, bronchoalveolar lavage fluid (BALF) cell counts, cytokine levels (IL-2, IL-4, IL-5, IL-17, TNF-alpha, TSLP) in the BALF, peribronchiolar eosinophils and parenchymal macrophages were measured. Results: HDM-sensitized animals presented increased lung elastance (p = 0.046), IgG1 serum levels (p = 0.029), peribronchiolar eosinophils (p = 0.028), BALF levels of total cells (p = 0.020), eosinophils (p = 0.028), IL-5 levels (p = 0.002) and TSLP levels (p = 0.046) in BALF. DE exposure alone increased lung elastance (p = 0.000) and BALF IL-4 levels (p = 0.045), whereas BD exposure alone increased BALF TSLP levels (p = 0.004). BD exposure did not influence any parameters after HDM challenge, while DE exposed animals presented increased BALF levels of total cells (p = 0.019), lymphocytes (p = 0.000), neutrophils (p = 0.040), macrophages (p = 0.034), BALF IL-4 levels (p = 0.028), and macrophagic inflammation in the lung tissue (p = 0.037), as well as decreased IgG1 (p = 0.046) and lgG2 (p = 0.043) levels when compared to the HDM group. Conclusion: The results indicate more adverse pulmonary effects of DE compared to BD exposure in allergic sensitized animals.
Palavras-chave
Referências
  1. Acciani TH, 2013, CLIN EXP ALLERGY, V43, P1406, DOI 10.1111/cea.12200
  2. Akopian AN, 2016, SEMIN IMMUNOPATHOL, V38, P331, DOI 10.1007/s00281-016-0554-4
  3. Alexis NE, 2014, INT IMMUNOPHARMACOL, V23, P347, DOI 10.1016/j.intimp.2014.08.009
  4. [Anonymous], 2010, GUID CAR US LAB AN
  5. Arantes-Costa FM, 2008, TOXICOL PATHOL, V36, P680, DOI 10.1177/0192623308317427
  6. Bang BR, 2011, EXP MOL MED, V43, P275, DOI 10.3858/emm.2011.43.5.028
  7. Bass VL, 2015, INHAL TOXICOL, V27, P545, DOI 10.3109/08958378.2015.1060279
  8. Brandt E. B., 2015, J ALLERGY CLIN IMMUN, V136, DOI [10.1016/jjaci.2014.11.043, DOI 10.1016/JJACI.2014.11.043]
  9. Brandt EB, 2013, J ALLERGY CLIN IMMUN, V132, P1194, DOI 10.1016/j.jaci.2013.06.048
  10. Brito JM, 2010, TOXICOL SCI, V116, P67, DOI 10.1093/toxsci/kfq107
  11. Bruggemann TR, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00718
  12. Carlsten C, 2014, AM J RESP CRIT CARE, V189, P1037, DOI 10.1164/rccm.201401-0108UP
  13. Carvalho-Oliveira R, 2015, CLINICS, V70, P706, DOI 10.6061/clinics/2015(10)09
  14. Cheng Y, 2017, ENVIRON POLLUT, V230, P72, DOI 10.1016/j.envpol.2017.06.014
  15. Clifford RL, 2017, J ALLERGY CLIN IMMUN, V139, P112, DOI 10.1016/j.jaci.2016.03.046
  16. de Brito JM, 2018, SCI TOTAL ENVIRON, V628-629, P1223, DOI 10.1016/j.scitotenv.2018.02.019
  17. de Oliveira APL, 2004, NEUROIMMUNOMODULAT, V11, P20, DOI 10.1159/000072965
  18. Gangwar J, 2011, INHAL TOXICOL, V23, P449, DOI 10.3109/08958378.2011.582189
  19. Gavett SH, 2015, INHAL TOXICOL, V27, P533, DOI 10.3109/08958378.2015.1054966
  20. Gehring U, 2015, EPIDEMIOLOGY, V26, P300, DOI 10.1097/EDE.0000000000000264
  21. Graver BM, 2016, ENVIRON SCI TECHNOL, V50, P12030, DOI 10.1021/acs.est.61303567
  22. Hoekman SK, 2012, FUEL PROCESS TECHNOL, V96, P237, DOI 10.1016/j.fuproc.2011.12.036
  23. Hosseini A, 2016, PART FIBRE TOXICOL, V13, DOI 10.1186/s12989-016-0114-z
  24. IEA International Energy Agency, 2016, WORLD EN OUTL 2016
  25. Jaguin M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0116560
  26. Karavalakis G, 2017, SCI TOTAL ENVIRON, V584, P1230, DOI 10.1016/j.scitotenv.2017.01.187
  27. Karimi P, 2015, EUR J EPIDEMIOL, V30, P91, DOI 10.1007/s10654-015-9988-6
  28. Lankoff A, 2017, ENVIRON SCI POLLUT R, V24, P19357, DOI 10.1007/s11356-017-9561-9
  29. Li S, 2011, ENVIRON HEALTH-GLOB, V10, DOI 10.1186/1476-069X-10-34
  30. Martin N, 2017, SCI TOTAL ENVIRON, V586, P409, DOI 10.1016/j.scitotenv.2016.12.041
  31. Matsumoto A, 2006, CLIN IMMUNOL, V121, P227, DOI 10.1016/j.clim.2006.08.003
  32. Mauad T, 2008, AM J RESP CRIT CARE, V178, P721, DOI 10.1164/rccm.200803-436OC
  33. Meldrum K, 2017, TOXICOL IN VITRO, V45, P409, DOI 10.1016/j.tiv.2017.06.023
  34. Moreira AP, 2011, J INTERF CYTOK RES, V31, P485, DOI 10.1089/jir.2011.0027
  35. Mutlu E, 2015, INHAL TOXICOL, V27, P515, DOI 10.3109/08958378.2015.1076910
  36. OECD. Organisation for Economic Co-operation and Development, 2010, SUBCHR INH TOX 90 DA
  37. Olivo CR, 2012, RESP PHYSIOL NEUROBI, V182, P81, DOI 10.1016/j.resp.2012.05.004
  38. Prieto-Parra L, 2017, ENVIRON INT, V101, P190, DOI [10.1016/j.envint.2017.01.021, 10.1016/j.envint2017.01.021]
  39. Ray A, 2017, TRENDS IMMUNOL, V38, P942, DOI 10.1016/j.it.2017.07.003
  40. Rider CF, 2018, ANN AM THORAC SOC, V15, pS130, DOI 10.1513/AnnalsATS.201706-479MG
  41. Riffo-Vasquez Y, 2007, CLIN EXP ALLERGY, V37, P459, DOI 10.1111/j.1365-2222.2007.02670.x
  42. Rigonato-Oliveira NC, 2018, EXERC IMMUNOL REV, V24, P48
  43. Bortolozzo ASS, 2018, BIOMED RES INT, DOI 10.1155/2018/9274817
  44. Segawa R, 2014, J PHARMACOL SCI, V124, P301, DOI 10.1254/jphs.13R16CP
  45. Shvedova AA, 2013, J TOXICOL ENV HEAL A, V76, P907, DOI 10.1080/15287394.2013.825217
  46. Silitonga AS, 2017, ENVIRON SCI POLLUT R, V24, P25383, DOI 10.1007/s11356-017-0141-9
  47. Takano H, 2017, J TOXICOL PATHOL, V30, P193, DOI 10.1293/tox.2017-0028
  48. Tanaka M, 2013, J TOXICOL SCI, V38, P35, DOI 10.2131/jts.38.35
  49. Tsai JH, 2014, SCI TOTAL ENVIRON, V466, P195, DOI 10.1016/j.scitotenv.2013.07.025
  50. Vera J, 2018, FRONT PHYSIOL, V9, DOI [10.3389/fphys.2078.00908, 10.3389/fphys.2018.00908]
  51. Vieira RP, 2011, AM J RESP CRIT CARE, V184, P215, DOI 10.1164/rccm.201011-1762OC
  52. Wang IJ, 2017, INT ARCH OCC ENV HEA, V90, P297, DOI 10.1007/s00420-017-1198-y
  53. World Health Organization, 2005, WHO AIR QUAL GUID PA
  54. Yanamala N, 2013, TOXICOL APPL PHARM, V272, P373, DOI 10.1016/j.taap.2013.07.006
  55. Yoshizaki K, 2017, SCI TOTAL ENVIRON, V586, P284, DOI 10.1016/j.scitotenv.2017.01.221
  56. Zaslona Z, 2014, J IMMUNOL, V193, P4245, DOI 10.4049/jimmunol.1400580
  57. Zhang XG, 2018, IEEE INT C BIOINFORM, P4, DOI 10.1109/BIBM.2018.8621232