Alternative Cutaneous Substitutes Based on Poly(L-co-D,L-lactic acid-co-trimethylene carbonate) with Schinus terebinthifolius Raddi Extract Designed for Skin Healing

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER CHEMICAL SOC
Autores
KOMATSU, Daniel
HAUSEN, Moema A.
ERI, Ricardo Yugi
LEAL, Vinicius
PEDRINI, Flavia
YAKSIC, Camilo
ALVES, Thais F. R.
V, Marco Chaud
Citação
ACS OMEGA, v.4, n.19, p.18317-18326, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The search for new therapies and drugs that act as topical agents to relieve pain and control the inflammatory processes in burns always attracted interest in clinical trials. As an alternative to synthetic drugs, natural extracts are useful in the development of new strategies and formulations for improving the quality of life. The aim of this study was to develop a wound dressing using poly(L-co-D,L-lactic acid-co-trimethylene carbonate) (PLDLA-TMC) containing Schinus terebinthifolius Raddi (S.T.R.). S.T.R. is a native Brazilian plant known for its strong anti-inflammatory responses. The membrane of PLDLA-TMC + S. terebinthifolius Raddi was prepared at different concentrations of S.T.R. (5, 10, 15, and 50%). The Fourier transform infrared results showed no change in the PLDLA-TMC spectrum after S.T.R. addition, whereas the swelling test showed changes only in PLDLA-TMC + S.T.R. at 50%. The wettability measurements showed a mass loss due to the decrease in the contact angle in all samples after the S.T.R. addition in the polymer, whereas the S.T.R. release test showed a linear delivery pattern. The scanning electron microscopy analysis showed that S.T.R. was homogeneously distributed at only 5 and 10%. Tensile tests demonstrated an increase in Young's modulus and a reduction in the elongation till rupture of PLDLA-TMC after the addition of S.T.R. The biocompatibility in vitro evaluation with rat fibroblast cells seeded in the membranes of PLDLA-TMC + S.T.R. showed that although S.T.R. interfered in cell morphology, all concentrations tested showed that cells were able to adhere and proliferate during 7 days. Thus, S.T.R. at 50% was chosen to be tested for in vivo trials. The histological and immunohistochemistry results revealed an accelerated skin healing at 7 days after controlled secondary burns were introduced in the dorsal skin, with a striking total recovery of the epidermis and high rates of molecular activation of cell proliferation. Due to the known biocompatibility properties of PLDLA-TMC and its stable release of S.T.R., we strongly recommend S.T.R.-containing PLDLA-TMC as a curative device to favor skin healing.
Palavras-chave
Referências
  1. dos Santos ACA, 2010, REV BRAS FARMACOGN, V20, P154, DOI 10.1590/S0102-695X2010000200003
  2. Azwa ZN, 2013, MATER DESIGN, V47, P424, DOI 10.1016/j.matdes.2012.11.025
  3. Bauer S, 2008, ACTA BIOMATER, V4, P1576, DOI 10.1016/j.actbio.2008.04.004
  4. Bhardwaj N., 2018, FUNCTIONAL 3D TISSUE, P345, DOI 10.1016/B978-0-08-100979-6.00014-8
  5. Carlini EA, 2010, REV BRAS FARMACOGN, V20, P140, DOI 10.1590/S0102-695X2010000200001
  6. Chouhan D, 2019, BIOMATERIALS, V216, DOI 10.1016/j.biomaterials.2019.119267
  7. da Rocha PD, 2019, COMP BIOCHEM PHYS C, V220, P36, DOI 10.1016/j.cbpc.2019.02.007
  8. de Lima MRF, 2006, J ETHNOPHARMACOL, V105, P137, DOI 10.1016/j.jep.2005.10.026
  9. Esposito AR, 2013, BIORESEARCH OPEN ACC, V2, P138, DOI 10.1089/biores.2012.0293
  10. Ferreira FV, 2013, REVBRAS QUEIMADURAS, V12, P132
  11. Ghosal K, 2019, CHEM ENG J, V358, P1262, DOI 10.1016/j.cej.2018.10.117
  12. Horng H.-C., 2017, INT J MOL SCI, V18, P1
  13. Jin GR, 2013, BIOMATERIALS, V34, P724, DOI 10.1016/j.biomaterials.2012.10.026
  14. Joseph PV, 2002, COMPOS SCI TECHNOL, V62, P1357, DOI 10.1016/S0266-3538(02)00080-5
  15. Ju HW, 2016, INT J BIOL MACROMOL, V85, P29, DOI 10.1016/j.ijbiomac.2015.12.055
  16. KIM HC, 2019, ADV DRUG DELIVERY RE, V9, DOI 10.1088/1475-7516/2019/09/001
  17. Komatsu D, 2017, J BIOMATER APPL, V32, P311, DOI 10.1177/0885328217719854
  18. Kulac M, 2013, J MOL HISTOL, V44, P83, DOI 10.1007/s10735-012-9452-9
  19. Lau K, 2009, EXP DERMATOL, V18, P921, DOI 10.1111/j.1600-0625.2009.00942.x
  20. Leal CV, 2019, J APPL POLYM SCI, V136, DOI 10.1002/app.47657
  21. Lordani T. V. A., 2018, MEDIAT INFLAMM, P1
  22. Mogosanu GD, 2014, INT J PHARMACEUT, V463, P127, DOI 10.1016/j.ijpharm.2013.12.015
  23. Motta AC, 2018, POLYM BULL, V75, P4515, DOI 10.1007/s00289-018-2283-4
  24. Motta AC, 2014, MATER RES-IBERO-AM J, V17, P619, DOI [10.1590/S1516-14392014005000067, 10.1590/S1516-14392014000300012]
  25. Nile S. H., 2019, J BIOCH MOL TOXICOL, V32
  26. Nobuoka H, 2019, TETRAHEDRON LETT, V60, P164, DOI 10.1016/j.tetlet.2018.12.002
  27. Pereira RF, 2013, CHEM ENGINEER TRANS, V32, P1009, DOI 10.3303/CET1332169
  28. Rah DK, 2005, TOXICOL LETT, V155, P269, DOI 10.1016/j.toxlet.2004.10.002
  29. Reddy AS, 2015, ACAD EMERG MED, V22, P1181, DOI 10.1111/acem.12768
  30. Ribeiro VP, 2018, PHARM BIOL, V56, P253, DOI 10.1080/13880209.2018.1454480
  31. Rosas EC, 2015, J ETHNOPHARMACOL, V175, P490, DOI 10.1016/j.jep.2015.10.014
  32. Silva RMA, 2010, REV BRAS QUEIMADURAS, V9, P60
  33. Silva SS, 2013, CARBOHYD POLYM, V98, P581, DOI 10.1016/j.carbpol.2013.06.022
  34. Silva-Weiss A, 2013, FOOD ENG REV, V5, P200, DOI 10.1007/s12393-013-9072-5
  35. Tezcaner A, 2003, BIOMATERIALS, V24, P4573, DOI 10.1016/S0142-9612(03)00302-8
  36. Thakur VK, 2014, CARBOHYD POLYM, V109, P102, DOI 10.1016/j.carbpol.2014.03.039