Association of Sarcopenia With Performance on Multiple Cognitive Domains: Results From the ELSA-Brasil Study

Carregando...
Imagem de Miniatura
Citações na Scopus
26
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS INC
Citação
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, v.74, n.11, p.1805-1811, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Sarcopenia and cognitive impairment share pathophysiological paths and risk factors. Our aim was to investigate the association of sarcopenia and its defining components with cognitive performance in middle-aged and older adults. Methods: This cross-sectional analysis included 5,038 participants from the ELSA-Brasil Study, aged >= 55 years. Muscle mass was evaluated by bioelectrical impedance analysis and muscle strength by handgrip strength. Sarcopenia was defined according to the Foundation for the National Institutes of Health. Cognition was evaluated using delayed word recall test, semantic verbal fluency test, and trail making test version B. Possible confounders included sociodemographic characteristics, lifestyle, and clinical comorbidities. Results: The frequencies of sarcopenia, low muscle mass, and low muscle strength were 1.8%, 23.3%, and 4.4%, respectively. After adjustment for possible confounders, poorer performance on the verbal fluency test was associated with sarcopenia (beta = -0.20, 95% confidence interval [CI] = -0.38; -0.01, p = .03) and low muscle mass (beta = -0.08, 95% CI = -0.14; -0.01, p = .02). Low muscle strength was associated with poorer performance in the delayed word recall test (beta = -0.14, 95% CI = -0.27; -0.02, p = .02), verbal fluency test (beta = -0.14, 95% CI = -0.26; -0.02, p = .03), and trail making test (beta = -0.15, 95% CI = -0.27; -0.03, p = .01). Conclusions: Sarcopenia was associated with poorer performance on the verbal fluency test, and low muscle strength was associated with poorer performance in all cognitive tests in middle-aged and older adults.
Palavras-chave
Muscle mass, Muscle strength, Cognition, Older adult
Referências
  1. Alexandre TD, 2014, J NUTR HEALTH AGING, V18, P284, DOI 10.1007/s12603-013-0413-0
  2. Alfaro-Acha A, 2006, J GERONTOL A-BIOL, V61, P859, DOI 10.1093/gerona/61.8.859
  3. Aquino EML, 2012, AM J EPIDEMIOL, V175, P315, DOI 10.1093/aje/kwr294
  4. Auyeung TW, 2011, J NUTR HEALTH AGING, V15, P690, DOI 10.1007/s12603-011-0110-9
  5. Auyeung TW, 2008, NEUROEPIDEMIOLOGY, V31, P167, DOI 10.1159/000154929
  6. Baar MP, 2018, CURR OPIN PHARMACOL, V40, P147, DOI 10.1016/j.coph.2018.05.007
  7. Beaudart C, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0169548
  8. Bertolucci PHF, 2001, ARQ NEURO-PSIQUIAT, V59, P532, DOI 10.1590/S0004-282X2001000400009
  9. Buckley JP, 2015, EPIDEMIOLOGY, V26, P204, DOI 10.1097/EDE.0000000000000217
  10. Cawthon Peggy M, 2019, J Gerontol A Biol Sci Med Sci, DOI 10.1093/gerona/glz081
  11. Chang KV, 2016, J AM MED DIR ASSOC, V17, DOI 10.1016/j.jamda.2016.09.013
  12. Craig CL, 2003, MED SCI SPORT EXER, V35, P1381, DOI 10.1249/01.MSS.0000078924.61453.FB
  13. Cruz-Jentoft AJ, 2019, AGE AGEING, V48, P16, DOI 10.1093/ageing/afy169
  14. Firth J, 2018, JAMA PSYCHIAT, V75, P740, DOI 10.1001/jamapsychiatry.2018.0503
  15. GREENLIEF CL, 1985, PERCEPT MOTOR SKILL, V61, P1283, DOI 10.2466/pms.1985.61.3f.1283
  16. Hsu YH, 2014, GERIATR GERONTOL INT, V14, P102, DOI 10.1111/ggi.12221
  17. Huang CY, 2016, REJUV RES, V19, P71, DOI 10.1089/rej.2015.1710
  18. Jones S, 2006, CORTEX, V42, P347, DOI 10.1016/S0010-9452(08)70361-7
  19. Maeda K, 2017, GERIATR GERONTOL INT, V17, P1048, DOI 10.1111/ggi.12825
  20. Malavolti M, 2003, ANN HUM BIOL, V30, P380, DOI 10.1080/0301446031000095211
  21. Moon JH, 2016, J NUTR HEALTH AGING, V20, P496, DOI 10.1007/s12603-015-0613-x
  22. MORRIS JC, 1989, NEUROLOGY, V39, P1159
  23. Nichols E, 2019, LANCET NEUROL, V18, P88, DOI 10.1016/S1474-4422(18)30403-4
  24. Nishiguchi S, 2016, J AM MED DIR ASSOC, V17, DOI 10.1016/j.jamda.2015.12.096
  25. Nunes M. A., 2011, REV HCPA, V31, P487
  26. Papachristou E, 2015, BMC GERIATR, V15, DOI 10.1186/s12877-015-0169-y
  27. Raji MA, 2005, J AM GERIATR SOC, V53, P1462, DOI 10.1111/j.1532-5415.2005.53457.x
  28. Sabia S, 2017, BMJ-BRIT MED J, V357, DOI 10.1136/bmj.j2709
  29. Schmidt MI, 2015, INT J EPIDEMIOL, V44, P68, DOI 10.1093/ije/dyu027
  30. Searle SD, 2015, ALZHEIMERS RES THER, V7, DOI 10.1186/s13195-015-0140-3
  31. Sperling RA, 2011, ALZHEIMERS DEMENT, V7, P280, DOI 10.1016/j.jalz.2011.03.003
  32. Studenski SA, 2014, J GERONTOL A-BIOL, V69, P547, DOI 10.1093/gerona/glu010
  33. Taekema DG, 2010, AGE AGEING, V39, P331, DOI 10.1093/ageing/afq022
  34. van Kan GA, 2013, J CACHEXIA SARCOPENI, V4, P225, DOI 10.1007/s13539-013-0112-z
  35. van Kan GA, 2013, AGE AGEING, V42, P196, DOI 10.1093/ageing/afs173
  36. van Kan GA, 2012, J GERONTOL A-BIOL, V67, P425, DOI 10.1093/gerona/glr177
  37. Verghese J, 2013, J GERONTOL A-BIOL, V68, P412, DOI 10.1093/gerona/gls191
  38. Volpato S, 2014, J GERONTOL A-BIOL, V69, P438, DOI 10.1093/gerona/glt149
  39. Wirth R, 2011, J NUTR HEALTH AGING, V15, P706, DOI 10.1007/s12603-011-0089-2