Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration

Carregando...
Imagem de Miniatura
Citações na Scopus
48
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
NOORDAM, Raymond
BOS, Maxime M.
WANG, Heming
WINKLER, Thomas W.
BENTLEY, Amy R.
KILPELAINEN, Tuomas O.
VRIES, Paul S. de
SUNG, Yun Ju
SCHWANDER, Karen
CADE, Brian E.
Citação
NATURE COMMUNICATIONS, v.10, article ID 5121, 13p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To elucidate the biology of sleep-associated adverse lipid profile, we conduct multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identify 49 previously unreported lipid loci, and 10 additional previously unreported lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identify new gene-sleep interactions for known lipid loci such as LPL and PCSK9. The previously unreported lipid loci have a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explain 4.25% of the variance in triglyceride level. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles.
Palavras-chave
Referências
  1. Adamovich Y, 2015, BBA-MOL CELL BIOL L, V1851, P1017, DOI 10.1016/j.bbalip.2014.11.013
  2. Aggarwal S, 2013, CLIN CARDIOL, V36, P671, DOI 10.1002/clc.22160
  3. Aho V, 2016, SCI REP-UK, V6, DOI 10.1038/srep24828
  4. Akiyama M, 2017, NAT GENET, V49, P1458, DOI 10.1038/ng.3951
  5. Anafi RC, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-362
  6. Ananthakrishnan AN, 2014, CLIN GASTROENTEROL H, V12, P1879, DOI 10.1016/j.cgh.2014.04.021
  7. Ardlie KG, 2015, SCIENCE, V348, P648, DOI 10.1126/science.1262110
  8. Aulchenko YS, 2007, BIOINFORMATICS, V23, P1294, DOI 10.1093/bioinformatics/btm108
  9. Aulchenko YS, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-134
  10. Ayas NT, 2003, ARCH INTERN MED, V163, P205, DOI 10.1001/archinte.163.2.205
  11. BENJAMINI Y, 1995, J R STAT SOC B, V57, P289
  12. Bentley AR, 2019, NAT GENET, V51, P636, DOI 10.1038/s41588-019-0378-y
  13. Bos MM, 2019, J SLEEP RES, V28, DOI 10.1111/jsr.12776
  14. BUYSSE DJ, 1989, PSYCHIAT RES, V28, P193, DOI 10.1016/0165-1781(89)90047-4
  15. Cappuccio FP, 2008, SLEEP, V31, P619, DOI 10.1093/sleep/31.5.619
  16. Cappuccio FP, 2011, EUR HEART J, V32, P1484, DOI 10.1093/eurheartj/ehr007
  17. Cappuccio FP, 2010, DIABETES CARE, V33, P414, DOI 10.2337/dc09-1124
  18. Carson V, 2016, APPL PHYSIOL NUTR ME, V41, pS294, DOI 10.1139/apnm-2016-0026
  19. Chambers JC, 2011, NAT GENET, V43, P1131, DOI 10.1038/ng.970
  20. Chua ECP, 2015, SLEEP, V38, P1683, DOI 10.5665/sleep.5142
  21. Dashti HS, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08917-4
  22. de Lange KM, 2017, NAT GENET, V49, P256, DOI 10.1038/ng.3760
  23. de Vries PS, 2019, AM J EPIDEMIOL, V188, P1033, DOI 10.1093/aje/kwz005
  24. Do R, 2013, NAT GENET, V45, P1345, DOI 10.1038/ng.2795
  25. Dong CH, 2011, J LIPID RES, V52, P1411, DOI 10.1194/jlr.P013672
  26. Egan KJ, 2017, SLEEP MED REV, V33, P70, DOI 10.1016/j.smrv.2016.05.004
  27. Ference BA, 2012, J AM COLL CARDIOL, V60, P2631, DOI 10.1016/j.jacc.2012.09.017
  28. Ford ES, 2014, J AM HEART ASSOC, V3, DOI 10.1161/JAHA.114.001454
  29. FRIEDEWALD WT, 1972, CLIN CHEM, V18, P499
  30. Galman C, 2005, GASTROENTEROLOGY, V129, P1445, DOI 10.1053/j.gastro.2005.09.009
  31. Giles TD, 2006, J HYPERTENS, V24, pS11, DOI 10.1097/01.hjh.0000220098.12154.88
  32. Gooley JJ, 2016, P NUTR SOC, V75, P440, DOI 10.1017/S0029665116000288
  33. Graff M, 2017, PLOS GENET, V13, DOI 10.1371/journal.pgen.1006528
  34. Gu ZG, 2014, BIOINFORMATICS, V30, P2811, DOI 10.1093/bioinformatics/btu393
  35. Halekoh U, 2006, J STAT SOFTW, V15, P1
  36. Hao N, 2013, NUCLEIC ACIDS RES, V41, P5626, DOI 10.1093/nar/gkt206
  37. Hoffmann TJ, 2018, GENETICS, V210, P499, DOI 10.1534/genetics.118.301479
  38. Holmes MV, 2015, EUR HEART J, V36, P539, DOI 10.1093/eurheartj/eht571
  39. Hu YN, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10448
  40. Huang TY, 2019, INT J EPIDEMIOL, V48, P1262, DOI 10.1093/ije/dyy234
  41. Jackson CL, 2018, SLEEP, V41, DOI 10.1093/sleep/zsy057
  42. Jones SE, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09576-1
  43. Justice AE, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14977
  44. Kanai M, 2018, NAT GENET, V50, P390, DOI 10.1038/s41588-018-0047-6
  45. Kanehisa M, 2000, NUCLEIC ACIDS RES, V28, P27, DOI 10.1093/nar/28.1.27
  46. Kaneita Y, 2008, SLEEP, V31, P645, DOI 10.1093/sleep/31.5.645
  47. Kathiresan S, 2008, NEW ENGL J MED, V358, P1240, DOI 10.1056/NEJMoa0706728
  48. Khor SS, 2013, PEERJ, V1, DOI 10.7717/peerj.66
  49. Kilpelainen TO, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-018-08008-w
  50. Klarin D, 2018, NAT GENET, V50, P1514, DOI 10.1038/s41588-018-0222-9
  51. Kraft P, 2007, HUM HERED, V63, P111, DOI 10.1159/000099183
  52. Kunutsor SK, 2015, INT J CLIN PRACT, V69, P136, DOI 10.1111/ijcp.12507
  53. Kunutsor SK, 2015, J HYPERTENS, V33, P2373, DOI 10.1097/HJH.0000000000000763
  54. Kunutsor SK, 2014, ANN EPIDEMIOL, V24, P809, DOI 10.1016/j.annepidem.2014.09.001
  55. Lane JM, 2017, NAT GENET, V49, P274, DOI 10.1038/ng.3749
  56. Laville V, 2018, BIOINFORMATICS, V34, P3412, DOI 10.1093/bioinformatics/bty379
  57. Lee JA, 2014, NUTR METAB CARDIOVAS, V24, P65, DOI 10.1016/j.numecd.2013.06.004
  58. Locke AE, 2015, NATURE, V518, P197, DOI 10.1038/nature14177
  59. Lonsdale J, 2013, NAT GENET, V45, P580, DOI 10.1038/ng.2653
  60. Lopez-Garcia E, 2008, AM J CLIN NUTR, V87, P310
  61. Maguire LH, 2018, NAT GENET, V50, P1359, DOI 10.1038/s41588-018-0203-z
  62. Manning AK, 2011, GENET EPIDEMIOL, V35, P11, DOI 10.1002/gepi.20546
  63. Moller-Levet CS, 2013, P NATL ACAD SCI USA, V110, pE1132, DOI 10.1073/pnas.1217154110
  64. Nikpay M, 2015, NAT GENET, V47, P1121, DOI 10.1038/ng.3396
  65. Park SG, 2014, ANN OCCUP ENVIRON ME, V26, DOI 10.1186/s40557-014-0040-1
  66. Patel SR, 2009, SLEEP, V32, P200, DOI 10.1093/sleep/32.2.200
  67. Peloso GM, 2014, AM J HUM GENET, V94, P223, DOI 10.1016/j.ajhg.2014.01.009
  68. Persson L, 2010, ARTERIOSCL THROM VAS, V30, P2666, DOI 10.1161/ATVBAHA.110.214130
  69. Petrov MER, 2013, SLEEP, V36, P1587, DOI 10.5665/sleep.3104
  70. Pruim RJ, 2010, BIOINFORMATICS, V26, P2336, DOI 10.1093/bioinformatics/btq419
  71. Psaty BM, 2009, CIRC-CARDIOVASC GENE, V2, P73, DOI 10.1161/CIRCGENETICS.108.829747
  72. Rao DC, 2017, CIRC-CARDIOVASC GENE, V10, DOI 10.1161/CIRCGENETICS.116.001649
  73. Ren HH, 2018, NUTR METAB, V15, DOI 10.1186/s12986-017-0237-8
  74. Reutrakul S, 2014, ANN NY ACAD SCI, V1311, P151, DOI 10.1111/nyas.12355
  75. Shungin D, 2015, NATURE, V518, P187, DOI 10.1038/nature14132
  76. Spada J, 2016, J SLEEP RES, V25, P690, DOI 10.1111/jsr.12421
  77. Spracklen CN, 2017, HUM MOL GENET, V26, P1770, DOI 10.1093/hmg/ddx062
  78. Sullivan AE, 2014, BIOCHEM J, V461, P403, DOI 10.1042/BJ20131618
  79. Swanson GR, 2011, EXPERT REV CLIN IMMU, V7, P29, DOI [10.1586/eci.10.83, 10.1586/ECI.10.83]
  80. Teslovich TM, 2010, NATURE, V466, P707, DOI 10.1038/nature09270
  81. Tobaldini E, 2014, ARCH ITAL BIOL, V152, P103, DOI 10.12871/000298292014235
  82. Tobaldini E, 2017, NEUROSCI BIOBEHAV R, V74, P321, DOI 10.1016/j.neubiorev.2016.07.004
  83. Tsutsumi K, 2002, BIOL PHARM BULL, V25, P1360, DOI 10.1248/bpb.25.1360
  84. van den Berg JF, 2008, INT J OBESITY, V32, P1083, DOI 10.1038/ijo.2008.57
  85. van Den Berg JF, 2008, PSYCHOSOM MED, V70, P1005, DOI 10.1097/PSY.0b013e318186e656
  86. van den Berg R, 2018, CELL REP, V22, P3521, DOI 10.1016/j.celrep.2018.03.004
  87. van den Berg R, 2017, AGING CELL, V16, P237, DOI 10.1111/acel.12547
  88. Voight BF, 2012, LANCET, V380, P572, DOI 10.1016/S0140-6736(12)60312-2
  89. Wang JN, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172631
  90. Ward LD, 2012, NUCLEIC ACIDS RES, V40, pD930, DOI 10.1093/nar/gkr917
  91. Watanabe K, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01261-5
  92. Wefers J, 2018, P NATL ACAD SCI USA, V115, P7789, DOI 10.1073/pnas.1722295115
  93. Wickham H., 2016, GGPLOT2 ELEGANT GRAP
  94. Willer CJ, 2013, NAT GENET, V45, P1274, DOI 10.1038/ng.2797
  95. Willer CJ, 2010, BIOINFORMATICS, V26, P2190, DOI 10.1093/bioinformatics/btq340
  96. Winkler TW, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1005378
  97. Winkler TW, 2015, BIOINFORMATICS, V31, P259, DOI 10.1093/bioinformatics/btu621
  98. Winkler TW, 2014, NAT PROTOC, V9, P1192, DOI 10.1038/nprot.2014.071
  99. Wong PM, 2015, SLEEP, V38, P223, DOI 10.5665/sleep.4402
  100. Wu YL, 2014, SLEEP MED, V15, P1456, DOI 10.1016/j.sleep.2014.07.018
  101. Xi B, 2014, SLEEP MED REV, V18, P293, DOI 10.1016/j.smrv.2013.06.001
  102. Yang LL, 2016, SLEEP, V39, P645, DOI 10.5665/sleep.5544
  103. Zeileis A, 2005, J STAT SOFTW, V14
  104. Zeileis A, 2006, J STAT SOFTW, V16