Predictors of long-term adherence to continuous positive airway pressure in patients with obstructive sleep apnea and cardiovascular disease

Carregando...
Imagem de Miniatura
Citações na Scopus
63
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS INC
Autores
RYSWYK, Emer Van
ANDERSON, Craig S.
ANTIC, Nicholas A.
BARBE, Ferran
BITTENCOURT, Lia
FREED, Ruth
HEELEY, Emma
LIU, Zhihong
LOFFLER, Kelly A.
Citação
SLEEP, v.42, n.10, article ID UNSP zsz152, 9p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Study Objectives: Poor adherence to continuous positive airway pressure (CPAP) commonly affects therapeutic response in obstructive sleep apnea (OSA). We aimed to determine predictors of adherence to CPAP among participants of the Sleep Apnea and cardioVascular Endpoints (SAVE) trial. Methods: SAVE was an international, randomized, open trial of CPAP plus usual care versus usual care (UC) alone in participants (45-75 years) with co-occurring moderate-to-severe OSA (>= 12 episodes/h of >= 4% oxygen desaturation) and established cardiovascular (CV) disease. Baseline sociodemographic, health and lifestyle factors, OSA symptoms, and 1-month change in daytime sleepiness, as well as CPAP side effects and adherence (during sham screening, titration week, and in the first month), were entered in univariate linear regression analyses to identify predictors of CPAP adherence at 24 months. Variables with p < 0.2 were assessed for inclusion in a multivariate linear mixed model with country, age, and sex included a priori and site as a random effect. Results: Significant univariate predictors of adherence at 24 months in 1,121 participants included: early adherence measures, improvement in daytime sleepiness at 1 month, fixed CPAP pressure, some measures of OSA severity, cardiovascular disease history, breathing pauses, and very loud snoring. While observed adherence varied between countries, adherence during sham screening, initial titration, and the first month of treatment retained independent predictive value in the multivariate model along with fixed CPAP pressure and very loud snoring. Conclusions: Early CPAP adherence had the greatest predictive value for identifying those at highest risk of non-adherence to long-term CPAP therapy.
Palavras-chave
sleep apnea, obstructive, continuous positive airway pressure, patient compliance
Referências
  1. Antic NA, 2015, SLEEP, V38, P1247, DOI 10.5665/sleep.4902
  2. Antic NA, 2011, SLEEP, V34, P111, DOI 10.1093/sleep/34.1.111
  3. Balakrishnan K, 2016, J CLIN SLEEP MED, V12, P849, DOI 10.5664/jcsm.5884
  4. Baratta F, 2018, SLEEP MED, V43, P66, DOI 10.1016/j.sleep.2017.09.032
  5. Bratton DJ, 2015, JAMA-J AM MED ASSOC, V314, P2280, DOI 10.1001/jama.2015.16303
  6. Budhiraja R, 2007, SLEEP, V30, P320
  7. Campos-Rodriguez F, 2016, SLEEP MED, V17, P1, DOI 10.1016/j.sleep.2015.07.038
  8. Campos-Rodriguez F, 2013, EUR RESPIR J, V42, P1255, DOI 10.1183/09031936.00165812
  9. Chai-Coetzer CL, 2013, SLEEP, V36, P1929, DOI 10.5665/sleep.3232
  10. Craig SE, 2012, THORAX, V67, P1090, DOI 10.1136/thoraxjnl-2012-202178
  11. Drager LF, 2013, J AM COLL CARDIOL, V62, P569, DOI 10.1016/j.jacc.2013.05.045
  12. Flemons WW, 1999, SLEEP, V22, P667
  13. Flores M, 2018, J THORAC DIS, V10, pS124, DOI 10.21037/jtd.2017.12.128
  14. Gagnadoux F, 2013, EUR RESPIR J, V42, P863, DOI 10.1183/09031936.00035713
  15. Gagnadoux F, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022503
  16. Gantner D, 2010, RESPIROLOGY, V15, P952, DOI 10.1111/j.1440-1843.2010.01797.x
  17. GODIN G, 1985, Canadian Journal of Applied Sport Sciences, V10, P141
  18. Gordon A, 2018, J CLIN SLEEP MED, V14, P1303, DOI 10.5664/jcsm.7260
  19. Jacobsen AR, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0189614
  20. Kohler M, 2010, THORAX, V65, P829, DOI 10.1136/thx.2010.135848
  21. Law M, 2014, J CLIN SLEEP MED, V10, P163, DOI 10.5664/jcsm.3444
  22. Luyster FS, 2017, CLIN CARDIOL, V40, P1297, DOI 10.1002/clc.22827
  23. McArdle N, 1999, AM J RESP CRIT CARE, V159, P1108, DOI 10.1164/ajrccm.159.4.9807111
  24. McEvoy RD, 2016, NEW ENGL J MED, V375, P919, DOI 10.1056/NEJMoa1606599
  25. Nadal N, 2018, SLEEP BREATH, V22, P157, DOI 10.1007/s11325-017-1549-7
  26. Peker Y, 2016, AM J RESP CRIT CARE, V194, P613, DOI 10.1164/rccm.201601-0088OC
  27. Popescu G, 2001, THORAX, V56, P727, DOI 10.1136/thorax.56.9.727
  28. Rotenberg BW, 2016, J OTOLARYNGOL-HEAD N, V45, DOI 10.1186/s40463-016-0156-0
  29. Schoch OD, 2014, RESPIRATION, V87, P121, DOI 10.1159/000354186
  30. SNAITH RP, 1986, BRIT MED J, V292, P344, DOI 10.1136/bmj.292.6516.344
  31. Somers ML, 2011, ISRN OTOLARYNGOL, V2011
  32. Ward KL, 2013, J CLIN SLEEP MED, V9, P1013, DOI 10.5664/jcsm.3072
  33. WARE JE, 1992, MED CARE, V30, P473, DOI 10.1097/00005650-199206000-00002
  34. Weaver TE, 1997, SLEEP, V20, P278, DOI 10.1093/sleep/20.4.278
  35. Weaver TE, 2007, SLEEP, V30, P711, DOI 10.1093/sleep/30.6.711
  36. Wohlgemuth WK, 2015, SLEEP MED, V16, P336, DOI 10.1016/j.sleep.2014.08.013
  37. Wozniak DR, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007736.pub2