A review of electrical impedance tomography in lung applications: Theory and algorithms for absolute images

Carregando...
Imagem de Miniatura
Citações na Scopus
63
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Autores
MARTINS, Thiago de Castro
SATO, Andre Kubagawa
MOURA, Fernando Silva de
CAMARGO, Erick Dario Leon Bueno de
SILVA, Olavo Luppi
SANTOS, Talles Batista Rattis
ZHAO, Zhanqi
MOELLER, Knut
MUELLER, Jennifer L.
Citação
ANNUAL REVIEWS IN CONTROL, v.48, p.442-471, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Electrical Impedance Tomography (EIT) is under fast development. The present paper is a review of some procedures that have contributed to improve spatial resolution and material properties accuracy, admitivity or impeditivity accuracy. A review of EIT medical applications is presented and they were classified into three broad categories: ARDS patients, obstructive lung diseases and perioperative patients. The use of absolute EIT image may enable the assessment of absolute lung volume, which may significantly improve clinical acceptance of EIT. The Control Theory, State Observers more specifically, have a developed theory that can be used for designing and operating EIT devices. Electrode placement, current injection strategy and electrode electric potential measurements strategy should maximize the number of observable and controllable directions of the state vector space. A non-linear stochastic state observer, the Unscented Kalman Filter, is used directly for reconstructing absolute EIT images. Historically, difference images were explored first since they are more stable in the presence of modelling errors. Absolute images require more detailed models of contact impedance, stray capacitance and properly refined finite element mesh, where the electric potential gradient is high. Parallelization of the forward program computation is necessary since the solution of the inverse problem often requires frequent solutions of the forward problem. Several reconstruction algorithms benefit from the Bayesian inverse problem approach and the concept of prior information. Anatomic and physiological information are used to form the prior information. An already tested methodology is presented to build the prior probability density function using an ensemble of CT scans and in vivo impedance measurements. Eight absolute EIT image algorithms are presented.
Palavras-chave
Electrical impedance tomography, Anatomical atlas, Bayesian inference, Massive parallel computing, Approximation error, ARDS, Lung diseases
Referências
  1. Adams R., 1975, SOBOLEV SPACES
  2. Adler A, 1996, IEEE T MED IMAGING, V15, P170, DOI 10.1109/42.491418
  3. Adler A, 2012, PHYSIOL MEAS, V33, P679, DOI 10.1088/0967-3334/33/5/679
  4. Allen GB, 2005, J APPL PHYSIOL, V99, P723, DOI 10.1152/japplphysiol.01339.2004
  5. Alquier P, 2016, STAT COMPUT, V26, P29, DOI 10.1007/s11222-014-9521-x
  6. Alsaker M., 2018, J COMPUTATIONAL APPL
  7. Alsaker M., 2017, INVERSE PROBLEMS IMA
  8. Alsaker M, 2018, INVERSE PROBL IMAG, V12, P883, DOI 10.3934/ipi.2018037
  9. Alsaker M, 2016, SIAM J IMAGING SCI, V9, P1619, DOI 10.1137/15M1020137
  10. Bachmann MC, 2018, CRIT CARE, V22, DOI 10.1186/s13054-018-2195-6
  11. Bates JHT, 2009, LUNG MECHANICS: AN INVERSE MODELING APPROACH, P1
  12. Bates JHT, 2002, J APPL PHYSIOL, V93, P705, DOI 10.1152/japplphysiol.01274.2001
  13. Bera TK, 2012, MECHATRONIC & INNOVATIVE APPLICATIONS, P3
  14. Bikowski J, 2008, INVERSE PROBL IMAG, V2, P43
  15. Bikowski J, 2011, INVERSE PROBL, V27, DOI 10.1088/0266-5611/27/1/015002
  16. Bjorck A., 1996, NUMERICAL METHODS LE
  17. Bockris J. O. M., 1998, MODERN ELECTROCHEM A, V2A
  18. Borges JB, 2012, J APPL PHYSIOL, V112, P225, DOI 10.1152/japplphysiol.01090.2010
  19. Borsic A, 2010, IEEE T MED IMAGING, V29, P44, DOI 10.1109/TMI.2009.2022540
  20. Brovman EY, 2018, J LAPAROENDOSC ADV S, V28, P1463, DOI 10.1089/lap.2018.0297
  21. Brower RG, 2004, NEW ENGL J MED, V351, P327
  22. Brown B. H., 2003, Journal of Medical Engineering & Technology, V27, P97, DOI 10.1080/0309190021000059687
  23. Brown B H, 1987, Clin Phys Physiol Meas, V8 Suppl A, P91, DOI 10.1088/0143-0815/8/4A/012
  24. Brown RM, 1997, COMMUN PART DIFF EQ, V22, P1009, DOI 10.1080/03605309708821292
  25. CALDERON AP, 1980, SEM NUM AN ITS APPL
  26. Calvetti D, 2015, INVERSE PROBL IMAG, V9, P749, DOI 10.3934/ipi.2015.9.749
  27. Calvetti D, 2015, INVERSE PROBL IMAG, V9, P767, DOI 10.3934/ipi.2015.9.767
  28. Camargo E. D. L B., 2013, THESIS
  29. Carver B., 2012, MED IMAGING TECHNIQU
  30. Cheney M, 1999, SIAM REV, V41, P85, DOI 10.1137/S0036144598333613
  31. CHENG KS, 1989, IEEE T BIO-MED ENG, V36, P918, DOI 10.1109/10.35300
  32. Cinnella G, 2015, ANESTHESIOLOGY, V123, P1113, DOI 10.1097/ALN.0000000000000862
  33. Clay MT, 2002, IEEE T MED IMAGING, V21, P629, DOI 10.1109/TMI.2002.800572
  34. Cornean H., 2006, Journal of Inverse and ILL-Posed Problems, V14, P111, DOI 10.1163/156939406777571102
  35. Darde J, 2016, ESAIM-MATH MODEL NUM, V50, P415, DOI 10.1051/m2an/2015049
  36. Darde J, 2013, INVERSE PROBL, V29, DOI 10.1088/0266-5611/29/8/085004
  37. Lima CR, 2007, MEAS SCI TECHNOL, V18, P2847, DOI 10.1088/0957-0233/18/9/014
  38. DeAngelo M, 2010, PHYSIOL MEAS, V31, P221, DOI 10.1088/0967-3334/31/2/008
  39. Delbary F., APPL ANAL, P1
  40. Delbary F., INVERSE PROBLEMS IMA
  41. Delbary F, 2011, J PHYS CONF SER, V290, DOI 10.1088/1742-6596/290/1/012003
  42. Demidenko E, 2005, IEEE T BIO-MED ENG, V52, P238, DOI 10.1109/TBME.2004.840506
  43. Denai MA, 2010, IEEE T INF TECHNOL B, V14, P641, DOI 10.1109/TITB.2009.2036010
  44. Dodd M, 2014, INVERSE PROBL IMAG, V8, P1013, DOI 10.3934/ipi.2014.8.1013
  45. Eichler L, 2018, OBES SURG, V28, P122, DOI 10.1007/s11695-017-2794-3
  46. Engrand P., 1997, 5 INT C NUCL ENG NIC, P1
  47. Eronia N, 2017, ANN INTENSIVE CARE, V7, DOI 10.1186/s13613-017-0299-9
  48. EYUBOGLU BM, 1995, PHYSIOL MEAS, V16, pA191, DOI 10.1088/0967-3334/16/3A/018
  49. EYUBOGLU BM, 1989, IEEE ENG MED BIOL, V8, P39, DOI 10.1109/51.32404
  50. Faddeev L. D., 1966, SOV PHYS DOKL, V10, P1033
  51. Ferguson ND, 2012, INTENS CARE MED, V38, P1573, DOI 10.1007/s00134-012-2682-1
  52. Franchineau G, 2017, AM J RESP CRIT CARE, V196, P447, DOI 10.1164/rccm.201605-1055OC
  53. Francini E, 2000, INVERSE PROBL, V16, P107, DOI 10.1088/0266-5611/16/1/309
  54. Frerichs I, 1998, ACTA ANAESTH SCAND, V42, P721, DOI 10.1111/j.1399-6576.1998.tb05308.x
  55. Frerichs I, 2016, PHYSIOL MEAS, V37, P698, DOI 10.1088/0967-3334/37/6/698
  56. Frerichs I, 2002, IEEE T MED IMAGING, V21, P646, DOI 10.1109/TMI.2002.800585
  57. Frerichs I, 2017, THORAX, V72, P83, DOI 10.1136/thoraxjnl-2016-208357
  58. Frerichs I, 2012, J CRIT CARE, V27, P172, DOI 10.1016/j.jcrc.2011.04.008
  59. Gabriel S, 1996, PHYS MED BIOL, V41, P2251, DOI 10.1088/0031-9155/41/11/002
  60. GEDDES LA, 1971, MED BIOL ENG, V9, P511, DOI 10.1007/BF02474708
  61. Golub GH, 2010, PRINC SER APPL MATH, P1
  62. Gong B, 2015, EXPERT REV RESP MED, V9, P721, DOI 10.1586/17476348.2015.1103650
  63. Gow C-H., 2018, IFAC PAPERSONLINE, V51, P52
  64. Grychtol B, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103045
  65. Hamilton SJ, 2018, PHYSIOL MEAS, V39, DOI 10.1088/1361-6579/aac8b1
  66. Hamilton SJ, 2017, PHYSIOL MEAS, V38, P1176, DOI 10.1088/1361-6579/aa63d7
  67. Hamilton SJ, 2012, INVERSE PROBL, V28, DOI 10.1088/0266-5611/28/9/095005
  68. Hamilton SJ, 2017, IEEE T MED IMAGING, V36, P457, DOI 10.1109/TMI.2016.2613511
  69. Hanke M, 2003, INVERSE PROBL, V19, pS65, DOI 10.1088/0266-5611/19/6/055
  70. Hanke M, 2011, MATH MOD METH APPL S, V21, P1395, DOI 10.1142/S0218202511005362
  71. Heines S. J. H., 2018, J CLIN MONITORING CO
  72. Herrera C. N. L, 2012, THESIS
  73. Herrera CNL, 2015, IEEE T MED IMAGING, V34, P267, DOI 10.1109/TMI.2014.2354333
  74. HOLDER DS, 2005, ELECT IMPEDANCE TOMO
  75. Hsu YL, 2017, PHYSIOL MEAS, V38, P1193, DOI 10.1088/1361-6579/aa66fd
  76. HUA P, 1993, IEEE T BIO-MED ENG, V40, P335, DOI 10.1109/10.222326
  77. Hua P, 1988, Clin Phys Physiol Meas, V9 Suppl A, P137, DOI 10.1088/0143-0815/9/4A/023
  78. Hyvonen N, 2017, SIAM J APPL MATH, V77, P2250, DOI 10.1137/17M1124292
  79. Isaacson D, 2006, PHYSIOL MEAS, V27, pS43, DOI 10.1088/0967-3334/27/5/S04
  80. Isaacson D, 2004, IEEE T MED IMAGING, V23, P821, DOI 10.1109/TMI.2004.827482
  81. Jang J, 2015, PHYSIOL MEAS, V36, P1179, DOI 10.1088/0967-3334/36/6/1179
  82. Jones DF, 2002, EUR J OPER RES, V137, P1, DOI 10.1016/S0377-2217(01)00123-0
  83. Kaipio J. P, 2004, STAT COMPUTATIONAL I, P160
  84. Kaipio J, 2007, J COMPUT APPL MATH, V198, P493, DOI 10.1016/j.cam.2005.09.027
  85. Kaipio JP, 1999, ANN NY ACAD SCI, V873, P430, DOI 10.1111/j.1749-6632.1999.tb09492.x
  86. Kaipio JP, 1998, P ANN INT IEEE EMBS, V20, P1032, DOI 10.1109/IEMBS.1998.745626
  87. Kaminsky DA, 2004, J APPL PHYSIOL, V97, P1849, DOI 10.1152/japplphysiol.00300.2004
  88. Kao TJ, 2006, PHYSIOL MEAS, V27, pS1, DOI 10.1088/0967-3334/27/5/S01
  89. Karagiannidis C, 2018, CRIT CARE, V22, DOI 10.1186/s13054-018-2137-3
  90. Karsten J, 2015, ACTA ANAESTH SCAND, V59, P723, DOI 10.1111/aas.12518
  91. Karsten J, 2016, CRIT CARE, V20, DOI 10.1186/s13054-015-1161-9
  92. Kim BS, 2004, MEAS SCI TECHNOL, V15, P2113, DOI 10.1088/0957-0233/15/10/022
  93. Kim KY, 2002, IEEE T MAGN, V38, P1301, DOI 10.1109/20.996332
  94. Kim KY, 2001, MEAS SCI TECHNOL, V12, P1032, DOI 10.1088/0957-0233/12/8/307
  95. Knudsen K., 2011, DISCRET CONTIN DYN S, P884
  96. Knudsen K, 2007, SIAM J APPL MATH, V67, P893, DOI 10.1137/060656930
  97. Knudsen K, 2009, INVERSE PROBL IMAG, V3, P599, DOI 10.3934/ipi.2009.3.599
  98. Kolehmainen V, 2001, INVERSE PROBL, V17, P1937, DOI 10.1088/0266-5611/17/6/324
  99. Kreutzer M, 2012, IEEE SYM PARA DISTR, P1696, DOI 10.1109/IPDPSW.2012.211
  100. Krueger-Ziolek S, 2017, PHYSIOL MEAS, V38, P1214, DOI 10.1088/1361-6579/aa69d5
  101. Krueger-Ziolek S, 2016, RESP PHYSIOL NEUROBI, V233, P25, DOI 10.1016/j.resp.2016.07.010
  102. Krueger-Ziolek S, 2015, PHYSIOL MEAS, V36, P1109, DOI 10.1088/0967-3334/36/6/1109
  103. Li CM, 2005, PROC CVPR IEEE, P430
  104. Lionheart W, 2005, SER MED PHY BIOMED E, P3
  105. Lionheart WRB, 2001, PHYSIOL MEAS, V22, P85, DOI 10.1088/0967-3334/22/1/311
  106. Lipponen A, 2011, MEAS SCI TECHNOL, V22, DOI 10.1088/0957-0233/22/10/104013
  107. Liu CH, 1998, J APPL PHYSIOL, V84, P1447
  108. Long Y, 2015, CHINESE MED J-PEKING, V128, P1421, DOI 10.4103/0366-6999.157626
  109. Lowhagen K, 2011, ACTA ANAESTH SCAND, V55, P165, DOI 10.1111/j.1399-6576.2010.02331.x
  110. Lowhagen K, 2010, MINERVA ANESTESIOL, V76, P1024
  111. Martins T.C., 2011, P 18 IFAC WORLD C MI, V18, P4989
  112. Martins T. C., 2018, IFAC PAPERS ONLINE, V51, P47
  113. Martins TC, 2017, IFAC PAPERSONLINE, V50, P9961, DOI 10.1016/j.ifacol.2017.08.1574
  114. Martins TC, 2015, IEEE ENG MED BIO, P4069, DOI 10.1109/EMBC.2015.7319288
  115. Martins TD, 2016, COMPUT MATH APPL, V72, P1230, DOI 10.1016/j.camwa.2016.06.021
  116. Martins TD, 2014, I S BIOMED IMAGING, P185, DOI 10.1109/ISBI.2014.6867840
  117. Martins TD, 2013, IEEE ENG MED BIO, P6425, DOI 10.1109/EMBC.2013.6611025
  118. Martins TD, 2012, IEEE ENG MED BIO, P1518, DOI 10.1109/EMBC.2012.6346230
  119. Martins TD, 2012, IEEE T BIO-MED ENG, V59, P1861, DOI 10.1109/TBME.2012.2188398
  120. Martins TD, 2011, IEEE ENG MED BIO, P7033, DOI 10.1109/IEMBS.2011.6091778
  121. Mauri T, 2013, AM J RESP CRIT CARE, V188, P1466, DOI 10.1164/rccm.201303-0463IM
  122. Meade MO, 2008, JAMA-J AM MED ASSOC, V299, P637, DOI 10.1001/jama.299.6.637
  123. Mellenthin M. M., 2018, IEEE T INSTRUMENTATI
  124. METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114
  125. Meurant G, 2005, NUMER ALGORITHMS, V40, P157, DOI 10.1007/S11075-005-1528-0
  126. Meurant G, 2006, LANCZOS CONJUGATE GR
  127. Morais CCA, 2017, AM J RESP CRIT CARE, V195, P1070, DOI 10.1164/rccm.201609-1780LE
  128. Moura F. S., 2013, THESIS
  129. Moura FS, 2010, IEEE T BIO-MED ENG, V57, P422, DOI 10.1109/TBME.2009.2032529
  130. Mueller JL, 2018, PHYSIOL MEAS, V39, DOI 10.1088/1361-6579/aac295
  131. Mueller JL, 2012, COMPUT SCI ENG SER, V10, P3, DOI 10.1137/1.9781611972344
  132. Mueller JL, 2003, SIAM J SCI COMPUT, V24, P1232, DOI 10.1137/S1064827501394568
  133. Muller P. A., 2014, THESIS
  134. Muller PA, 2018, PHYSIOL MEAS, V39, DOI 10.1088/1361-6579/aab8c4
  135. Muller PA, 2017, IEEE T MED IMAGING, V36, P1868, DOI 10.1109/TMI.2017.2695893
  136. Murphy EK, 2009, IEEE T MED IMAGING, V28, P1576, DOI 10.1109/TMI.2009.2021611
  137. Nachman AI, 1996, ANN MATH, V143, P71, DOI 10.2307/2118653
  138. NACHMAN AI, 1988, ANN MATH, V128, P531, DOI 10.2307/1971435
  139. NELSON LW, 1976, IEEE T AUTOMAT CONTR, V21, P94, DOI 10.1109/TAC.1976.1101148
  140. Nestler C, 2017, BRIT J ANAESTH, V119, P1194, DOI 10.1093/bja/aex192
  141. Ngatchou P., 2005, P 13 INT C INT SYST, P84, DOI 10.1109/ISAP.2005.1599245
  142. Nissinen A, 2011, INT J UNCERTAIN QUAN, V1, P203, DOI 10.1615/Int.J.UncertaintyQuantification.v1.i3.20
  143. Nopp P, 1997, MED BIOL ENG COMPUT, V35, P695, DOI 10.1007/BF02510980
  144. NOVIKOV RG, 1988, FUNCT ANAL APPL+, V22, P263
  145. Ogata K, 1987, DISCRETE TIME CONTRO
  146. PAULSON K, 1992, SIAM J APPL MATH, V52, P1012, DOI 10.1137/0152059
  147. Pillow JJ, 2006, PEDIATR PULM, V41, P105, DOI 10.1002/ppul.20319
  148. POLLAK V, 1974, MED BIOL ENG, V12, P460, DOI 10.1007/BF02478602
  149. Pulletz S, 2012, MULTIDISCIP RESP MED, V7, DOI 10.1186/2049-6958-7-44
  150. Radke O. C., 2015, ANESTH PAIN MED, V5
  151. Santos SA, 2018, RESP PHYSIOL NEUROBI, V254, P1, DOI 10.1016/j.resp.2018.03.016
  152. Sato A. K., 2018, IFAC PAPERSONLINE, V51, P41
  153. Schibler A, 2013, PHYSIOL MEAS, V34, P1319, DOI 10.1088/0967-3334/34/10/1319
  154. Siltanen S, 2000, INVERSE PROBL, V16, P681, DOI 10.1088/0266-5611/16/3/310
  155. Siltanen Samuli, 1999, ANN ACAD SCI FENN-M, V121, P56
  156. Silva O. L, 2012, THESIS
  157. Silva O. L., 2018, IFAC PAPERSONLINE, V51, P30
  158. Silva OL, 2017, CONTROL ENG PRACT, V58, P276, DOI 10.1016/j.conengprac.2016.03.003
  159. SOMERSALO E, 1992, SIAM J APPL MATH, V52, P1023, DOI 10.1137/0152060
  160. SOMERSALO E, 1991, INVERSE PROBL, V7, P899, DOI 10.1088/0266-5611/7/6/011
  161. Sousa T., 2011, P COB 2011 21 INT C, P24
  162. Spadaro S, 2018, CRIT CARE, V22, DOI 10.1186/s13054-017-1931-7
  163. Sun Q, 2017, CRIT CARE, V21, DOI 10.1186/s13054-017-1714-1
  164. Suppapitnarm A, 2000, ENG OPTIMIZ, V33, P59, DOI 10.1080/03052150008940911
  165. Pham T, 2017, AM J RESP CRIT CARE, V195, P860, DOI 10.1164/rccm.201609-1773CP
  166. Tavares RS, 2012, J PHYS CONF SER, V407, DOI 10.1088/1742-6596/407/1/012015
  167. Tavares RS, 2019, BIOMED SIGNAL PROCES, V52, P445, DOI 10.1016/j.bspc.2017.02.007
  168. TAVARES RS, 2014, IFAC P VOLUMES IFACP, V19, P7535
  169. Terragni PP, 2007, AM J RESP CRIT CARE, V175, P160, DOI 10.1164/rccm.200607-915OC
  170. Trigo F. C., 2005, THESIS
  171. Trigo FC, 2004, IEEE T BIO-MED ENG, V51, P72, DOI 10.1109/TBME.2003.820389
  172. Vauhkonen M, 1998, IEEE T BIO-MED ENG, V45, P486, DOI 10.1109/10.664204
  173. Vauhkonen P. J., 2004, THESIS
  174. Vauhkonen PJ, 1999, IEEE T BIO-MED ENG, V46, P1150, DOI 10.1109/10.784147
  175. Vauhkonen PJ, 2000, PHYSIOL MEAS, V21, P125, DOI 10.1088/0967-3334/21/1/316
  176. Vazquez F, 2011, CONCURR COMP-PRACT E, V23, P815, DOI 10.1002/cpe.1658
  177. Venegas JG, 1998, J APPL PHYSIOL, V84, P389
  178. Vilhunen T, 2002, MEAS SCI TECHNOL, V13, P1848, DOI 10.1088/0957-0233/13/12/307
  179. Vogt B, 2018, PEDIATR PULM, V53, P293, DOI 10.1002/ppul.23912
  180. Vogt B, 2016, AM J PHYSIOL-LUNG C, V311, pL8, DOI 10.1152/ajplung.00463.2015
  181. Vogt B, 2012, J APPL PHYSIOL, V113, P1154, DOI 10.1152/japplphysiol.01630.2011
  182. Wang W, 2018, KAOHSIUNG J MED SCI, V34, P420, DOI 10.1016/j.kjms.2017.12.012
  183. Wettstein M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106591
  184. Wrigge H, 2016, J THORAC DIS, V8, pE1661, DOI 10.21037/jtd.2016.12.101
  185. YANG CD, 1990, J GUID CONTROL DYNAM, V13, P1051, DOI 10.2514/3.20578
  186. Yun L, 2016, MEDICINE, V95, DOI 10.1097/MD.0000000000003820
  187. Zhang J, 2010, PHYSIOL MEAS, V31, pS45, DOI 10.1088/0967-3334/31/8/S04
  188. Zhang W, 2014, PHYSIOL MEAS, V35, P2001, DOI 10.1088/0967-3334/35/10/2001
  189. Zhao Z, 2017, ACTA ANAESTH SCAND, V61, P1166, DOI 10.1111/aas.12959
  190. Zhao Z., 2012, VENTILATION INHOMOGE
  191. Zhao ZQ, 2018, PHYSIOL MEAS, V39, DOI 10.1088/1361-6579/aaaeb2
  192. Zhao ZQ, 2018, PHYSIOL MEAS, V39, DOI 10.1088/1361-6579/aa9eb4
  193. Zhao ZQ, 2013, PHYSIOL MEAS, V34, pN107, DOI 10.1088/0967-3334/34/11/N107