Contributions of the Left and the Right Hemispheres on Language-Induced Grip Force Modulation of the Left Hand in Unimanual Tasks

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
SILVA, Ronaldo Luis da
SANTOS, Francielly Ferreira
MENDES, Isabella Maria Goncalves
HIGGINS, Johanne
FRAK, Victor
Citação
MEDICINA-LITHUANIA, v.55, n.10, article ID 674, 10p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background and Objectives: Language-induced grip force modulation (LGFM) can be used to better understand the link between language and motor functions as an expression of embodied language. However, the contribution of each brain hemisphere to LGFM is still unclear. Using six different action verbs as stimuli, this study evaluated the grip force modulation of the left hand in a unimanual task to characterize the left and right hemispheres' contributions. Materials and Methods: Left-hand LGFM of 20 healthy and consistently right-handed subjects was evaluated using the verbs ""to write"", ""to hold"", ""to pull"" (left-lateralized central processing actions), ""to draw"", ""to tie"", and ""to drive"" (bihemispheric central processing actions) as linguistic stimuli. The time between the word onset and the first interval of statistical significance regarding the baseline (here as reaction time, RT) was also measured. Results: The six verbs produced LGFM. The modulation intensity was similar for the six verbs, but the RT was variable. The verbs ""to draw"", ""to tie"", and ""to drive"", whose central processing of the described action is bihemispheric, showed a longer RT compared to the other verbs. Conclusions: The possibility of a given manual action being performed by the left hand in consistent right-handers does not interfere with the occurrence of LGFM when the descriptor verb of this action is used as a linguistic stimulus, even if the possibility is remote. Therefore, LGFM seems to mainly rely on the left hemisphere, while a greater activation of the right hemisphere in action processing appears to slow the increase in LGFM intensity.
Palavras-chave
grip force modulation, embodied language, left hand, right hemisphere, left hemisphere, unimanual task
Referências
  1. Aravena P, 2014, FRONT HUM NEUROSCI, V8, DOI 10.3389/fnhum.2014.00163
  2. Aravena P, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050287
  3. Bernal B, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.00687
  4. Brandi ML, 2014, J NEUROSCI, V34, P13183, DOI 10.1523/JNEUROSCI.0597-14.2014
  5. Broca P.P., 1863, B SOC ANTHR, P200, DOI 10.1515/9783110807783-002
  6. Budisavljevic S, 2015, J NEUROSCI, V35, P12625, DOI 10.1523/JNEUROSCI.1255-14.2015
  7. Choi MH, 2017, J PHYSIOL ANTHROPOL, V36, DOI 10.1186/s40101-017-0128-8
  8. da Silva RL, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0192320
  9. Eichert N, 2019, CORTEX, V118, P107, DOI 10.1016/j.cortex.2018.05.005
  10. Fischer MH, 2008, Q J EXP PSYCHOL, V61, P825, DOI 10.1080/17470210701623605
  11. Frak V, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009728
  12. Friederici AD, 2002, TRENDS COGN SCI, V6, P78, DOI 10.1016/S1364-6613(00)01839-8
  13. Friederici AD, 2003, CEREB CORTEX, V13, P170, DOI 10.1093/cercor/13.2.170
  14. Hampson M, 2002, HUM BRAIN MAPP, V15, P247, DOI 10.1002/hbm.10022
  15. Jung-Beeman M, 2005, TRENDS COGN SCI, V9, P512, DOI 10.1016/j.tics.2005.09.009
  16. Lemaire JJ, 2013, BRAIN TOPOGR, V26, P428, DOI 10.1007/s10548-012-0257-7
  17. Mack JE, 2013, BRAIN SCI, V3, P1198, DOI 10.3390/brainsci3031198
  18. Matchin W, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.00241
  19. Meltzer JA, 2010, CEREB CORTEX, V20, P1853, DOI 10.1093/cercor/bhp249
  20. Naeser MA, 2011, BRAIN LANG, V119, P206, DOI 10.1016/j.bandl.2011.07.005
  21. Nazir TA, 2017, BEHAV RES METHODS, V49, P61, DOI 10.3758/s13428-015-0696-7
  22. Nishiyori R, 2016, BRAIN TOPOGR, V29, P42, DOI 10.1007/s10548-015-0443-5
  23. OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
  24. Peschke C, 2012, NEUROIMAGE, V59, P788, DOI 10.1016/j.neuroimage.2011.07.025
  25. Potgieser ARE, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0126723
  26. Quallo MM, 2012, J NEUROSCI, V32, P17351, DOI 10.1523/JNEUROSCI.1009-12.2012
  27. Ramayya AG, 2010, CEREB CORTEX, V20, P507, DOI 10.1093/cercor/bhp141
  28. Ries SK, 2016, ANN NY ACAD SCI, V1369, P111, DOI 10.1111/nyas.12993
  29. Sburlea AI, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35018-x
  30. Schmitz J, 2017, PROG NEUROBIOL, V159, P69, DOI 10.1016/j.pneurobio.2017.10.005
  31. Schulte-Ruther M, 2007, J COGNITIVE NEUROSCI, V19, P1354, DOI 10.1162/jocn.2007.19.8.1354
  32. Spiers HJ, 2007, NEUROIMAGE, V36, P245, DOI 10.1016/j.neuroimage.2007.02.032
  33. Szaflarski JP, 2006, HUM BRAIN MAPP, V27, P202, DOI 10.1002/hbm.20177
  34. Szameitat AJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038506
  35. Taguchi M, 2010, PSYCHOL REP, V107, P329, DOI 10.2466/10.23.25.PR0.107.4.329-335
  36. Walsh RR, 2008, NEUROIMAGE, V43, P540, DOI 10.1016/j.neuroimage.2008.07.019
  37. Weisberg J, 2007, CEREB CORTEX, V17, P513, DOI 10.1093/cercor/bhj176
  38. Wheaton L, 2009, CLIN NEUROPHYSIOL, V120, P980, DOI 10.1016/j.clinph.2009.02.161
  39. Yang J, 2012, BRAIN RES BULL, V88, P460, DOI 10.1016/j.brainresbull.2012.04.006
  40. Yuan Y, 2015, BRAIN COGNITION, V98, P15, DOI 10.1016/j.bandc.2015.05.004