Vaginal Biomarkers That Predict Cervical Length and Dominant Bacteria in the Vaginal Microbiomes of Pregnant Women

Carregando...
Imagem de Miniatura
Citações na Scopus
35
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER SOC MICROBIOLOGY
Autores
WITKIN, Steven S.
RIDENHOUR, Benjamin J.
MINIS, Evelyn
HATANAKA, Alan
SARMENTO, Stephanno G. P.
FRANCA, Marcelo S.
CARVALHO, Francisco H. C.
HAMAMOTO, Tatiana K.
MATTAR, Rosiane
Autor de Grupo de pesquisa
Citação
MBIO, v.10, n.5, article ID e02242-19, 13p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In many impoverished regions of the world, it may not be possible to assess two major risk factors for preterm birth: a short cervical length and the depletion of vaginal lactobacilli. We determined whether measuring specific compounds in vaginal fluid might be a simple, noninvasive, and cost-effective way to predict the bacteria that dominate the vaginal microbiome and indicate the presence of a shortened cervix (<25 mm). Vaginal fluid samples were prospectively collected from mid-trimester pregnant women, and the concentrations of D- and L-lactic acid, tissue inhibitor of matrix metalloproteinases TIMP-1 and TIMP-2, matrix metalloproteinases MMP-2 and MMP-8, the 70-kDa heat shock protein, a2 isoform of vacuolar ATPase, and sequestrome-1 were quantified by an enzyme-linked immunosorbent assay (ELISA). The compositions of vaginal microbiomes were assessed by analysis of the V1-V3 regions of 16S rRNA genes, while cervical length was determined by transvaginal ultrasonography. The vaginal microbiomes could be clustered into five community state types (CSTs), four of which were dominated by a single Lactobacillus species. The dominance of Lactobacillus crispatus or Lactobacillus jensenii in the vaginal microbiome predicted the level of D-lactic acid present. Several of the biomarkers, especially TIMP-1, in combination with the subject's age and race, were significantly associated with cervical length. Using piecewise structural equation modeling, we established a causal network that links CST to cervical length via biomarkers. We concluded that measuring levels of TIMP-1 and D-lactic acid in vaginal secretions might be a straightforward way to assess the risk for preterm birth due to a short cervix and microbiome composition. IMPORTANCE Premature birth and its complications are the largest contributors to infant death in the United States and globally. A short cervical length and the depletion of Lactobacillus species are known risk factors for preterm birth. However, in many resource-poor areas of the world, the technology to test for their occurrence is unavailable, and pregnant women with these risk factors are neither identified nor treated. In this study, we used path analysis to gain an unprecedented understanding of interactions between vaginal microbiome composition, the concentrations of various compounds in vaginal secretions, and cervical length. We identified low-cost point-of-care measures that might be used to identify pregnant women at risk for preterm birth. The use of these measures coupled with appropriate preventative or treatment strategies could reduce the incidence of preterm births in poor areas of the world that lack access to more sophisticated diagnostic methods.
Palavras-chave
cervical length, D-lactic acid, preterm birth, TIMP-1, vaginal microbiome, Lactobacillus, cervix, lactic acid, microbial communities
Referências
  1. Alfirevic Z, 2013, ULTRASOUND OBST GYN, V41, P146, DOI 10.1002/uog.12300
  2. Anderson MJ, 2006, ECOL LETT, V9, P683, DOI 10.1111/j.1461-0248.2006.00926.x
  3. Anton L, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.02181
  4. Blumenshine P, 2010, AM J PREV MED, V39, P263, DOI 10.1016/j.amepre.2010.05.012
  5. Boskey ER, 2001, HUM REPROD, V16, P1809, DOI 10.1093/humrep/16.9.1809
  6. Brown RG, 2019, TRANSL RES, V207, P30, DOI 10.1016/j.trsl.2018.12.005
  7. Brown RG, 2018, BMC MED, V16, DOI 10.1186/s12916-017-0999-x
  8. Callahan BJ, 2017, P NATL ACAD SCI USA, V114, P9966, DOI 10.1073/pnas.1705899114
  9. Chaiworapongsa T, 2008, J MATERN-FETAL NEO M, V21, P449, DOI 10.1080/14767050802054550
  10. Chang AM, 2013, J MATERN-FETAL NEO M, V26, P1581, DOI 10.3109/14767058.2013.795535
  11. Manta FSD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075145
  12. Elovitz MA, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09285-9
  13. Freitas AC, 2018, MICROBIOME, V6, DOI 10.1186/s40168-018-0502-8
  14. Fuchs F, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191002
  15. Goffinet F, 2005, BJOG-INT J OBSTET GY, V112, P38, DOI 10.1111/j.1471-0528.2005.00583.x
  16. Goldenberg RL, 1998, AM J PUBLIC HEALTH, V88, P233, DOI 10.2105/AJPH.88.2.233
  17. Goldenberg RL, 2008, LANCET, V371, P75, DOI 10.1016/S0140-6736(08)60074-4
  18. Harrison MS, 2016, SEMIN FETAL NEONAT M, V21, P74, DOI 10.1016/j.siny.2015.12.007
  19. Heng YJJ, 2012, REPROD SCI, V19, P55, DOI 10.1177/1933719111413299
  20. Huang J, 2014, NAT REV MICROBIOL, V12, P101, DOI 10.1038/nrmicro3160
  21. Iams JD, 1996, NEW ENGL J MED, V334, P567, DOI 10.1056/NEJM199602293340904
  22. Jaiswal MK, 2013, J IMMUNOL, V191, P5702, DOI 10.4049/jimmunol.1301604
  23. Kindinger LM, 2017, MICROBIOME, V5, DOI 10.1186/s40168-016-0223-9
  24. Kindinger LM, 2016, SCI TRANSL MED, V8, DOI 10.1126/scitranslmed.aag1026
  25. Lippai M, 2014, BIOMED RES INT, DOI 10.1155/2014/832704
  26. Lu MC, 2004, AM J OBSTET GYNECOL, V191, P691, DOI 10.1016/j.ajog.2004.04.018
  27. MacIntyre DA, 2015, SCI REP-UK, V5, DOI 10.1038/srep08988
  28. March of Dimes PMNCH. Save the Children WHO, 2012, BORN TOO SOON GLOBAL
  29. Martell B, 2018, ARCH GYNECOL OBSTET, V297, P601, DOI 10.1007/s00404-017-4619-y
  30. Minchin PR, 2018, VEGAN COMMUNITY ECOL
  31. Nasioudis D, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09857-z
  32. Petricevic L, 2014, SCI REP-UK, V4, DOI 10.1038/srep05136
  33. R Core Team, 2018, R LANG ENV STAT COMP
  34. Rahkonen L, 2009, HUM REPROD, V24, P2693, DOI 10.1093/humrep/dep284
  35. Romero R, 2014, MICROBIOME, V2, DOI 10.1186/2049-2618-2-18
  36. ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7
  37. Shipley B, 2009, ECOLOGY, V90, P363, DOI 10.1890/08-1034.1
  38. Sisti G, 2016, GENES IMMUN, V17, P1, DOI 10.1038/gene.2015.57
  39. SOKAL ROBERT R., 1958, UNIV KANSAS SCI BULL, V38, P1409
  40. Tency I, 2014, FACTS VIEWS VIS OBGY, V6, P19
  41. To MS, 2006, ULTRASOUND OBST GYN, V27, P362, DOI 10.1002/uog.2773
  42. Witkin SS, 2017, BJOG-INT J OBSTET GY, V124, P606, DOI 10.1111/1471-0528.14390
  43. Witkin SS, 2013, MBIO, V4, DOI 10.1128/mBio.00460-13
  44. Witkin SS, 2012, SCI TRANSL MED, V4, DOI 10.1126/scitranslmed.3003944
  45. Yoo HN, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180878
  46. Yudin MH, 2008, J OBSTET GYNAECOL CA, V30, P702, DOI 10.1016/S1701-2163(16)32919-X