Changes in the intestinal microbiota of superobese patients after bariatric surgery

Carregando...
Imagem de Miniatura
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
HOSPITAL CLINICAS, UNIV SAO PAULO
Autor de Grupo de pesquisa
Citação
CLINICS, v.74, article ID e1198, 8p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
OBJECTIVES: The gut microbiota is associated with obesity and weight loss after bariatric surgery and has been related to its changing pattern. Exactly how the bacterial population affects weight loss and the results of surgery remain controversial. This study aimed to evaluate the intestinal microbiota of superobese patients before and after gastric bypass surgery (RYGB). METHOD: DNA fragments for the microbiota obtained from stool samples collected from nine superobese patients before and after bariatric surgery were sequenced using Ion Torrent. RESULTS: We observed that with a mean follow-up of 15 months, patients achieved 55.9% excess weight loss (EWL). A significant population reduction in the Proteobacteria phylum (11 to 2%, p=0.0025) was observed after surgery, while no difference was seen in Firmicutes and Bacteroidetes. Further analyses performed with two specific individuals with divergent clinical outcomes showed a change in the pattern between them, with a significant increase in Firmicutes and a decrease in Bacteroidetes in the patient with less weight loss (%EWL 50.79 vs. 61.85). CONCLUSIONS: RYGB affects the microbiota of superobese patients, with a significant reduction in Proteobacteria in patients with different weight loss, showing that different bacteria may contribute to the process.
Palavras-chave
Gut Microbiota, Fecal, Obesity, Bariatric Surgery, Gastric Bypass
Referências
  1. Angelakis E, 2017, MICROB PATHOGENESIS, V106, P119, DOI 10.1016/j.micpath.2016.01.024
  2. Boulange CL, 2016, GENOME MED, V8, DOI 10.1186/s13073-016-0303-2
  3. Kelles SMB, 2014, ABCD-ARQ BRAS CIR DI, V27, P261, DOI 10.1590/S0102-67202014000400008
  4. Cardinelli CS, 2015, OBES SURG, V25, P346, DOI 10.1007/s11695-014-1525-2
  5. Chaudhary N, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0116106
  6. Collado MC, 2008, AM J CLIN NUTR, V88, P894
  7. Ejtahed HS, 2018, MICROB PATHOGENESIS, V116, P13, DOI 10.1016/j.micpath.2017.12.074
  8. Furet JP, 2010, DIABETES, V59, P3049, DOI 10.2337/db10-0253
  9. Gerasimidis Konstantinos, 2016, BMC Res Notes, V9, P365, DOI 10.1186/s13104-016-2171-7
  10. Kobyliak N, 2016, NUTR J, V15, DOI 10.1186/s12937-016-0166-9
  11. Kuczynski J, 2012, CURR PROTOC CHEM BIO, V1, P1, DOI 10.1002/9780471729259.mc01e05s27
  12. Loman NJ, 2012, NAT BIOTECHNOL, V30, P434, DOI 10.1038/nbt.2198
  13. Lund Jesper, 2018, Methods Mol Biol, V1807, P21, DOI 10.1007/978-1-4939-8561-6_3
  14. Magro DO, 2008, OBES SURG, V18, P648, DOI 10.1007/s11695-007-9265-1
  15. Murphy R, 2017, OBES SURG, V27, P917, DOI 10.1007/s11695-016-2399-2
  16. Musso G, 2010, DIABETES CARE, V33, P2277, DOI 10.2337/dc10-0556
  17. Nguyen DM, 2010, GASTROENTEROL CLIN N, V39, P1, DOI 10.1016/j.gtc.2009.12.014
  18. Oh J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0151064
  19. Pajecki D, 2007, OBES SURG, V17, P601, DOI 10.1007/s11695-007-9104-4
  20. Panek M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-23296-4
  21. Rizzatti G, 2017, BIOMED RES INT, DOI 10.1155/2017/9351507
  22. Salipante SJ, 2014, APPL ENVIRON MICROB, V80, P7583, DOI 10.1128/AEM.02206-14
  23. Santo MA, 2016, OBES SURG, V26, P919, DOI 10.1007/s11695-015-1908-z
  24. Sarhan M, 2011, OBES SURG, V21, P1337, DOI 10.1007/s11695-011-0402-5
  25. Schwiertz A, 2010, OBESITY, V18, P190, DOI 10.1038/oby.2009.167
  26. Turnbaugh PJ, 2006, NATURE, V444, P1027, DOI 10.1038/nature05414
  27. Zhang HS, 2009, P NATL ACAD SCI USA, V106, P2365, DOI 10.1073/pnas.0812600106