Antigenic competition in CD4(+) T cell responses in a randomized, multicenter, double-blind clinical HIV vaccine trial

Carregando...
Imagem de Miniatura
Citações na Scopus
17
Tipo de produção
article
Data de publicação
2019
Editora
AMER ASSOC ADVANCEMENT SCIENCE
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
GRUNENBERG, Nicole A.
YU, Chenchen
MANSO, Bryce
PANTALEO, Giuseppe
CASAPIA, Martin
BADEN, Lindsey R.
VALENCIA, Javier
SOBIESZCZYK, Magdalena
Hong Van Tieu
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
SCIENCE TRANSLATIONAL MEDICINE, v.11, n.519, article ID eaaw1673, 10p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
T cell responses have been implicated in reduced risk of HIV acquisition in uninfected persons and control of viral replication in HIV-infected individuals. HIV Gag-specific T cells have been predominantly associated with post-infection control, whereas Env antigens are the target for protective antibodies; therefore, inclusion of both antigens is common in HIV vaccine design. However, inclusion of multiple antigens may provoke antigenic competition, reducing the potential effectiveness of the vaccine. HVTN 084 was a randomized, multicenter, double-blind phase 1 trial to investigate whether adding Env to a Gag/Pol vaccine decreases the magnitude or breadth of Gag/ Pol-specific T cell responses. Fifty volunteers each received one intramuscular injection of 1 x 10(10) particle units (PU) of rAd5 Gag/Pol and EnvA/B/C (3:1:1:1 mixture) or 5 x 10(9) PU of rAd5 Gag/Pol. CD4(+) T cell responses to Gag/ Pol measured 4 weeks after vaccination by cytokine expression were significantly higher in the group vaccinated without Env, whereas CD8(+) T cell responses did not differ significantly between the two groups. Mapping of individual epitopes revealed greater breadth of the Gag/Pol-specific T cell response in the absence of Env compared to Env coimmunization. Addition of an Env component to a Gag/Pol vaccine led to reduced Gag/Pol CD4(+) T cell response rate and magnitude as well as reduced epitope breadth, confirming the presence of antigenic competition. Therefore, T cell-based vaccine strategies should aim at choosing a minimalist set of antigens to reduce interference of individual vaccine components with the induction of the maximally achievable immune response.
Palavras-chave
Referências
  1. Addo MM, 2003, J VIROL, V77, P2081, DOI 10.1128/JVI.77.3.2081-2092.2003
  2. Barouch DH, 2018, LANCET, V392, P232, DOI [10.1016/S0140-6736(18)31364-3, 10.1016/s0140-6736(18)31364-3]
  3. Blobel NJ, 2017, J IMMUNOL, V198
  4. Bockl K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034723
  5. Buchbinder SP, 2008, LANCET, V372, P1881, DOI 10.1016/S0140-6736(08)61591-3
  6. Chirmule N, 1996, MICROBIOL REV, V60, P386
  7. Chung AW, 2014, SCI TRANSL MED, V6, DOI 10.1126/scitranslmed.3007736
  8. Churchyard GJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021225
  9. De Rosa SC, 2012, CYTOM PART A, V81A, P1019, DOI 10.1002/cyto.a.22218
  10. Finak G, 2014, BIOSTATISTICS, V15, P87, DOI 10.1093/biostatistics/kxt024
  11. Frahm N, 2012, J CLIN INVEST, V122, P359, DOI 10.1172/JCI60202
  12. Grufman P, 1999, EUR J IMMUNOL, V29, P2197, DOI 10.1002/(SICI)1521-4141(199907)29:07<2197::AID-IMMU2197>3.0.CO;2-B
  13. Hammer SM, 2013, NEW ENGL J MED, V369, P2083, DOI 10.1056/NEJMoa1310566
  14. Hansen SG, 2013, NATURE, V502, P100, DOI 10.1038/nature12519
  15. Hansen SG, 2011, NATURE, V473, P523, DOI 10.1038/nature10003
  16. Hayball JD, 2004, IMMUNOL CELL BIOL, V82, P103, DOI 10.1046/j.0818-9641.2004.01233.x
  17. Hertz T, 2013, PLOS PATHOG, V9, DOI 10.1371/journal.ppat.1003404
  18. Horton H, 2007, J IMMUNOL METHODS, V323, P39, DOI 10.1016/j.jim.2007.03.002
  19. Hu HT, 2008, J IMMUNOL, V180, P5593, DOI 10.4049/jimmunol.180.8.5593
  20. Janes H, 2013, J INFECT DIS, V208, P1231, DOI 10.1093/infdis/jit322
  21. Janes HE, 2017, J INFECT DIS, V215, P1376, DOI 10.1093/infdis/jix086
  22. Kedl RM, 2003, CURR OPIN IMMUNOL, V15, P120, DOI 10.1016/S0952-7915(02)00009-2
  23. Kedl RM, 2000, J EXP MED, V192, P1105, DOI 10.1084/jem.192.8.1105
  24. Kiepiela P, 2007, NAT MED, V13, P46, DOI 10.1038/nm1520
  25. Kwong PD, 2013, NAT REV IMMUNOL, V13, P693, DOI 10.1038/nri3516
  26. Lachenbruch PA, 2001, STAT MED, V20, P1215, DOI 10.1002/sim.790
  27. Lin L, 2015, NAT BIOTECHNOL, V33, P610, DOI 10.1038/nbt.3187
  28. Masemola A, 2004, J VIROL, V78, P3233, DOI 10.1128/JVI.78.7.3233-3243.2004
  29. McElrath MJ, 2008, LANCET, V372, P1894, DOI 10.1016/S0140-6736(08)61592-5
  30. Mothe B, 2018, ADV EXP MED BIOL, V1075, P31, DOI 10.1007/978-981-13-0484-2_2
  31. Papasavvas E, 2015, IMMUNOLOGY, V145, P380, DOI 10.1111/imm.12452
  32. Peiperl L, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013579
  33. Radebe M, 2015, AIDS, V29, P23, DOI 10.1097/QAD.0000000000000508
  34. RADOVICH J, 1967, SCIENCE, V158, P512, DOI 10.1126/science.158.3800.512
  35. SCHECHTE.I, 1965, BIOCHIM BIOPHYS ACTA, V104, P303, DOI 10.1016/0304-4165(65)90254-0
  36. Smith A, 2000, IMMUNITY, V13, P783, DOI 10.1016/S1074-7613(00)00076-5
  37. Spearman P, 2011, J INFECT DIS, V203, P1165, DOI 10.1093/infdis/jiq175
  38. Taussig M J, 1973, Curr Top Microbiol Immunol, V60, P125
  39. Valentin A, 2015, HUM VACC IMMUNOTHER, V11, P2005, DOI 10.1080/21645515.2015.1016671
  40. Watkins DI, 2008, NAT MED, V14, P617, DOI 10.1038/nm.f.1759
  41. WEIGLE WO, 1967, J IMMUNOL, V99, P392
  42. Williamson AL, 2016, EXPERT REV VACCINES, V15, P585, DOI 10.1586/14760584.2016.1129904
  43. Yates NL, 2014, SCI TRANSL MED, V6, DOI 10.1126/scitranslmed.3007730