Detecting multiple differentially methylated CpG sites and regions related to dimensional psychopathology in youths

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
SPINDOLA, Leticia M.
SANTORO, Marcos L.
PAN, Pedro M.
OTA, Vanessa K.
XAVIER, Gabriela
CARVALHO, Carolina M.
TALARICO, Fernanda
SLEIMAN, Patrick
MARCH, Michael
PELLEGRINO, Renata
Citação
CLINICAL EPIGENETICS, v.11, n.1, article ID 146, 16p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Psychiatric symptomatology during late childhood and early adolescence tends to persist later in life. In the present longitudinal study, we aimed to identify changes in genome-wide DNA methylation patterns that were associated with the emergence of psychopathology in youths from the Brazilian High-Risk Cohort (HRC) for psychiatric disorders. Moreover, for the differentially methylated genes, we verified whether differences in DNA methylation corresponded to differences in mRNA transcript levels by analyzing the gene expression levels in the blood and by correlating the variation of DNA methylation values with the variation of mRNA levels of the same individuals. Finally, we examined whether the variations in DNA methylation and mRNA levels were correlated with psychopathology measurements over time. Methods We selected 24 youths from the HRC who presented with an increase in dimensional psychopathology at a 3-year follow-up as measured by the Child Behavior Checklist (CBCL). The DNA methylation and gene expression data were compared in peripheral blood samples (n = 48) obtained from the 24 youths before and after developing psychopathology. We implemented a methodological framework to reduce the effect of chronological age on DNA methylation using an independent population of 140 youths and the effect of puberty using data from the literature. Results We identified 663 differentially methylated positions (DMPs) and 90 differentially methylated regions (DMRs) associated with the emergence of psychopathology. We observed that 15 DMPs were mapped to genes that were differentially expressed in the blood; among these, we found a correlation between the DNA methylation and mRNA levels of RB1CC1 and a correlation between the CBCL and mRNA levels of KMT2E. Of the DMRs, three genes were differentially expressed: ASCL2, which is involved in neurogenesis; HLA-E, which is mapped to the MHC loci; and RPS6KB1, the gene expression of which was correlated with an increase in the CBCL between the time points. Conclusions We observed that changes in DNA methylation and, consequently, in gene expression in the peripheral blood occurred concurrently with the emergence of dimensional psychopathology in youths. Therefore, epigenomic modulations might be involved in the regulation of an individual's development of psychopathology.
Palavras-chave
Mental disorders, Epigenetics, Methylation, Gene expression, Transcription
Referências
  1. Achenbach TM, 2001, MANUAL ASEBA SCH AGE
  2. Alisch RS, 2017, TRANSL PSYCHIAT, V7, DOI 10.1038/s41398-017-0047-9
  3. Allen Jeffrey D, 2009, J Cancer Sci Ther, V1, P25
  4. Almstrup K, 2016, SCI REP-UK, V6, DOI 10.1038/srep28657
  5. Anttila V, 2018, SCIENCE, V360, P1313, DOI 10.1126/science.aap8757
  6. Aryee MJ, 2014, BIOINFORMATICS, V30, P1363, DOI 10.1093/bioinformatics/btu049
  7. Axelrud LK, 2018, AM J PSYCHIAT, V175, P555, DOI 10.1176/appi.ajp.2017.17050529
  8. Bell JT, 2012, PLOS GENET, V8, P189, DOI 10.1371/journal.pgen.1002629
  9. Benjamini Y, 2001, BEHAV BRAIN RES, V125, P279, DOI 10.1016/S0166-4328(01)00297-2
  10. Blanken LME, 2015, AM J PSYCHIAT, V172, P479, DOI 10.1176/appi.ajp.2014.14040482
  11. Braun PR, 2019, TRANSL PSYCHIAT, V9, DOI 10.1038/s41398-019-0376-y
  12. Bredy TW, 2010, DEV PSYCHOBIOL, V52, P331, DOI 10.1002/dev.20424
  13. Calais JB, 2015, NEUROBIOL LEARN MEM, V122, P19, DOI 10.1016/j.nlm.2015.01.002
  14. Calkins ME, 2015, J CHILD PSYCHOL PSYC, V56, P1356, DOI 10.1111/jcpp.12416
  15. Chen BJ, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0182891
  16. Chen HF, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035524
  17. Cordero-Martinez J, 2018, J CELL BIOCHEM, V119, P5944, DOI 10.1002/jcb.26789
  18. Da Ros M, 2015, MOL CELL ENDOCRINOL, V401, P73, DOI 10.1016/j.mce.2014.11.026
  19. Deaton AM, 2011, GENOME RES, V21, P1074, DOI 10.1101/gr.118703.110
  20. Dias C, 2016, AM J HUM GENET, V99, P253, DOI 10.1016/j.ajhg.2016.05.030
  21. Dong S, 2014, CELL REP, V9, P16, DOI 10.1016/j.celrep.2014.08.068
  22. Du P, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-587
  23. Forsberg SL, 2018, TRANSL PSYCHIAT, V8, DOI 10.1038/s41398-017-0062-x
  24. Fortin JP, 2017, BIOINFORMATICS, V33, P558, DOI 10.1093/bioinformatics/btw691
  25. Freire-Aradas A, 2018, FORENSIC SCI INT-GEN, V36, P50, DOI 10.1016/j.fsigen.2018.06.011
  26. Goodman R, 2000, J CHILD PSYCHOL PSYC, V41, P645, DOI 10.1111/j.1469-7610.2000.tb02345.x
  27. Han LKM, 2018, AM J PSYCHIAT, V175, P774, DOI 10.1176/appi.ajp.2018.17060595
  28. Hannon E, 2016, GENOME BIOL, V17, DOI 10.1186/s13059-016-1041-x
  29. Hannon E, 2015, EPIGENETICS-US, V10, P1024, DOI 10.1080/15592294.2015.1100786
  30. Hofstra MB, 2002, J AM ACAD CHILD PSY, V41, P182, DOI 10.1097/00004583-200202000-00012
  31. Horvath S, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-10-r115
  32. Howard DM, 2019, NAT NEUROSCI, V22, P343, DOI 10.1038/s41593-018-0326-7
  33. Hubel C, 2019, MOL PSYCHIATR, V24, P901, DOI 10.1038/s41380-018-0254-7
  34. Hussaini SMQ, 2014, NEUROSCI BIOBEHAV R, V47, P369, DOI 10.1016/j.neubiorev.2014.09.005
  35. Insel T, 2010, AM J PSYCHIAT, V167, P748, DOI 10.1176/appi.ajp.2010.09091379
  36. Jaffe AE, 2014, GENOME BIOL, V15, DOI 10.1186/gb-2014-15-2-r31
  37. Johnson SC, 2013, NATURE, V493, P338, DOI 10.1038/nature11861
  38. Jones PA, 2012, NAT REV GENET, V13, P484, DOI 10.1038/nrg3230
  39. Kadoch C, 2013, NAT GENET, V45, P592, DOI 10.1038/ng.2628
  40. Lonsdale J, 2013, NAT GENET, V45, P580, DOI 10.1038/ng.2653
  41. Maksimovic Jovana, 2016, F1000Res, V5, P1281, DOI 10.12688/f1000research.8839.1
  42. Massari ME, 2000, MOL CELL BIOL, V20, P429, DOI 10.1128/MCB.20.2.429-440.2000
  43. Mathers CD, 2006, PLOS MED, V3, DOI 10.1371/journal.pmed.0030442
  44. Medina-Rivera A, 2018, TRENDS BIOCHEM SCI, V43, P452, DOI 10.1016/j.tibs.2018.03.004
  45. Meyer MA, 2014, NEUROL INT, V6, P32, DOI 10.4081/ni.2014.5388
  46. Mill J, 2013, NAT REV GENET, V14, P585, DOI 10.1038/nrg3405
  47. Mous SE, 2014, PSYCHOL MED, V44, P3203, DOI 10.1017/S0033291714000877
  48. Nilsson E, 2009, REPRODUCTION, V138, P697, DOI 10.1530/REP-09-0179
  49. Numata S, 2012, AM J HUM GENET, V90, P260, DOI 10.1016/j.ajhg.2011.12.020
  50. Paus T, 2008, NAT REV NEUROSCI, V9, P947, DOI 10.1038/nrn2513
  51. Peters J, 2014, NAT REV GENET, V15, P517, DOI 10.1038/nrg3766
  52. Peters TJ, 2015, EPIGENET CHROMATIN, V8, DOI 10.1186/1756-8935-8-6
  53. Ramos-Lopez O, 2018, BRAIN BEHAV, V8, DOI 10.1002/brb3.1017
  54. Ripke S, 2014, NATURE, V511, P421, DOI 10.1038/nature13595
  55. Rizzo LB, 2014, NEUROSCI BIOBEHAV R, V42, P157, DOI 10.1016/j.neubiorev.2014.02.004
  56. Rosner M, 2008, MUTAT RES-REV MUTAT, V659, P284, DOI 10.1016/j.mrrev.2008.06.001
  57. Salum GA, 2015, INT J METH PSYCH RES, V24, P58, DOI 10.1002/mpr.1459
  58. Souquet B, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003784
  59. Sullivan LC, 2008, TISSUE ANTIGENS, V72, P415, DOI 10.1111/j.1399-0039.2008.01138.x
  60. Tunster SJ, 2018, DIS MODEL MECH, V11, DOI 10.1242/dmm.035832
  61. Turecki G, 2014, LANCET PSYCHIAT, V1, P461, DOI 10.1016/S2215-0366(14)00022-4
  62. Wang J, 2013, NUCLEIC ACIDS RES, V41, pW77, DOI 10.1093/nar/gkt439
  63. Wang Y, 2017, INT J RADIAT BIOL, V93, P581, DOI 10.1080/09553002.2017.1294273
  64. Whiteford HA, 2013, LANCET, V382, P1575, DOI 10.1016/S0140-6736(13)61611-6
  65. Wilkinson LS, 2007, NAT REV NEUROSCI, V8, P832, DOI 10.1038/nrn2235
  66. Yin YM, 2017, SCIENCE, V356, DOI 10.1126/science.aaj2239
  67. Zhang XM, 2017, CELL MOL LIFE SCI, V74, P2333, DOI 10.1007/s00018-017-2470-8