Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases

Carregando...
Imagem de Miniatura
Citações na Scopus
192
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
BETTS, Matthew J.
KIRILINA, Evgeniya
IVANOV, Dimo
ACOSTA-CABRONERO, Julio
CALLAGHAN, Martina F.
LAMBERT, Christian
CARDENAS-BLANCO, Arturo
PINE, Kerrin
PASSAMONTI, Luca
Citação
BRAIN, v.142, p.2558-2571, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.
Palavras-chave
locus coeruleus (LC), magnetic resonance imaging (MRI), neurodegeneration, noradrenaline (NA), biomarker
Referências
  1. Acosta-Cabronero J, 2016, J NEUROSCI, V36, P364, DOI 10.1523/JNEUROSCI.1907-15.2016
  2. Andres-Benito P, 2017, NEUROPATH APPL NEURO, V43, P373, DOI 10.1111/nan.12386
  3. Arendt T, 2015, ACTA NEUROPATHOL COM, V3, DOI 10.1186/s40478-015-0187-1
  4. Assal F, 2002, CURR OPIN NEUROL, V15, P445, DOI 10.1097/00019052-200208000-00007
  5. Aston-Jones G, 2005, ANNU REV NEUROSCI, V28, P403, DOI 10.1146/annurev.neuro.28.061604.135709
  6. ASTONJONES G, 1981, J NEUROSCI, V1, P876
  7. BAKER KG, 1989, EXP BRAIN RES, V77, P257, DOI 10.1007/BF00274983
  8. Benarroch EE, 2008, ACTA NEUROPATHOL, V115, P629, DOI 10.1007/s00401-008-0351-9
  9. Benarroch EE, 2009, NEUROLOGY, V73, P1699, DOI 10.1212/WNL.0b013e3181c2937c
  10. Bernard R, 2011, MOL PSYCHIATR, V16, P634, DOI 10.1038/mp.2010.44
  11. Berridge CW, 2003, BRAIN RES REV, V42, P33, DOI 10.1016/S0165-0173(03)00143-7
  12. Betts Matthew J, 2019, Alzheimers Dement (Amst), V11, P281, DOI 10.1016/j.dadm.2019.02.001
  13. Betts MJ, 2018, FRONT NEUROSCI-SWITZ, V12, DOI 10.3389/fnins.2018.00401
  14. Betts MJ, 2017, NEUROIMAGE, V163, P150, DOI 10.1016/j.neuroimage.2017.09.042
  15. Betts MJ, 2016, NEUROIMAGE, V138, P43, DOI 10.1016/j.neuroimage.2016.05.024
  16. Biesemeier A, 2016, J NEUROCHEM, V138, P339, DOI 10.1111/jnc.13648
  17. Birkl C, 2018, MAGN RESON MED, V79, P1111, DOI 10.1002/mrm.26699
  18. Birkl C, 2016, NMR BIOMED, V29, P458, DOI 10.1002/nbm.3477
  19. Birkl C, 2014, MAGN RESON MED, V71, P1575, DOI 10.1002/mrm.24799
  20. Braak H, 2004, CELL TISSUE RES, V318, P121, DOI 10.1007/s00441-004-0956-9
  21. Braak H, 2003, NEUROBIOL AGING, V24, P197, DOI 10.1016/S0197-4580(02)00065-9
  22. Braak H, 2012, CURR OPIN NEUROL, V25, P708, DOI 10.1097/WCO.0b013e32835a3432
  23. Braak H, 2011, J NEUROPATH EXP NEUR, V70, P960, DOI 10.1097/NEN.0b013e318232a379
  24. Breton-Provencher V, 2019, NAT NEUROSCI, V22, P218, DOI 10.1038/s41593-018-0305-z
  25. Brunnstrom H, 2011, CLIN NEUROPATHOL, V30, P104, DOI 10.5414/NPP30104
  26. Cassidy CM, 2019, P NATL ACAD SCI USA, V116, P5108, DOI 10.1073/pnas.1807983116
  27. Chalermpalanupap T, 2017, J NEUROSCI, P1483
  28. CHANPALAY V, 1989, J COMP NEUROL, V287, P373, DOI 10.1002/cne.902870308
  29. Chen XC, 2014, MAGN RESON IMAGING, V32, P1301, DOI 10.1016/j.mri.2014.07.003
  30. Clewett DV, 2018, J NEUROSCI, V38, P1558, DOI 10.1523/JNEUROSCI.2097-17.2017
  31. Clewett DV, 2016, NEUROBIOL AGING, V37, P117, DOI 10.1016/j.neurobiolaging.2015.09.019
  32. Dahl MJ, 2019, BIORXIV, DOI [10.1101/332098v3, DOI 10.1101/332098V3]
  33. Dickson DW, 2008, ACTA NEUROPATHOL, V115, P437, DOI 10.1007/s00401-008-0345-7
  34. DIXON WT, 1990, MAGN RESON IMAGING, V8, P417, DOI 10.1016/0730-725X(90)90050-C
  35. Duzel E, 2015, BIOL MAGN RESON, V30, P581, DOI 10.1007/978-1-4899-7591-1_20
  36. Dusek P, 2019, MAGN RESON MED, V81, P2688, DOI 10.1002/mrm.27595
  37. Ehrenberg AJ, 2017, NEUROPATH APPL NEURO, V43, P393, DOI 10.1111/nan.12387
  38. Ehrenberg AJ, 2018, J ALZHEIMERS DIS, V66, P115, DOI 10.3233/JAD-180688
  39. Engelen M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048490
  40. ENNIS M, 1991, J COMP NEUROL, V306, P480, DOI 10.1002/cne.903060311
  41. Enochs WS, 1997, RADIOLOGY, V204, P417, DOI 10.1148/radiology.204.2.9240529
  42. ENOCHS WS, 1989, INVEST RADIOL, V24, P794, DOI 10.1097/00004424-198910000-00014
  43. Eser RA, 2018, J NEUROPATH EXP NEUR, V77, P149, DOI 10.1093/jnen/nlx113
  44. Espay AJ, 2014, MOVEMENT DISORD, V29, P1710, DOI 10.1002/mds.26048
  45. Finnema SJ, 2016, SCI TRANSL MED, V8, DOI 10.1126/scitranslmed.aaf6667
  46. Forstmann BU, 2017, NAT REV NEUROSCI, V18, P57, DOI 10.1038/nrn.2016.163
  47. Garcia-Lorenzo D, 2013, BRAIN, V136, P2120, DOI 10.1093/brain/awt152
  48. GERMAN DC, 1992, ANN NEUROL, V32, P667, DOI 10.1002/ana.410320510
  49. GERMAN DC, 1988, J NEUROSCI, V8, P1776
  50. Giguere N, 2018, FRONT NEUROL, V9, DOI 10.3389/fneur.2018.00455
  51. Haber SN, 2010, NEUROPSYCHOPHARMACOL, V35, P4, DOI 10.1038/npp.2009.129
  52. Hammerer D, 2018, P NATL ACAD SCI USA
  53. Hammerer D, 2018, DEM MRI M CAMBR
  54. Hansen AK, 2016, BRAIN, V139, P2039, DOI 10.1093/brain/aww098
  55. Heneka MT, 2015, LANCET NEUROL, V14, P388, DOI 10.1016/S1474-4422(15)70016-5
  56. Heneka MT, 2006, J NEUROSCI, V26, P1343, DOI 10.1523/JNEUROSCI.4236-05.2006
  57. Herrmann N, 2004, J NEUROPSYCH CLIN N, V16, P261, DOI 10.1176/appi.neuropsych.16.3.261
  58. Hoogendijk WJG, 1999, ANN NEUROL, V45, P82, DOI 10.1002/1531-8249(199901)45:1<82::AID-ART14>3.0.CO;2-T
  59. Irwin DJ, 2016, ANN NEUROL, V79, P272, DOI 10.1002/ana.24559
  60. Jacobs HIL, 2018, NEUROBIOL AGING, V69, P167, DOI 10.1016/j.neurobiolaging.2018.05.021
  61. Jacobs HIL, 2015, NEUROBIOL AGING, V36, P618, DOI 10.1016/j.neurobiolaging.2014.10.041
  62. Jacobs HI, 2018, ALZHEIMERS DEMENT, V14, pP509
  63. Jardanhazi-Kurutz D, 2010, NEUROCHEM INT, V57, P375, DOI 10.1016/j.neuint.2010.02.001
  64. Jessen F, 2018, ALZHEIMERS RES THER, V10, DOI 10.1186/s13195-017-0314-2
  65. Kalinin S, 2006, ANTIOXID REDOX SIGN, V8, P873, DOI 10.1089/ars.2006.8.873
  66. Kalinin S, 2012, NEUROBIOL AGING, V33, P1651, DOI 10.1016/j.neurobiolaging.2011.04.012
  67. Kelly SC, 2017, ACTA NEUROPATHOL COM, V5, DOI 10.1186/s40478-017-0411-2
  68. Kempadoo KA, 2016, P NATL ACAD SCI USA, V113, P14835, DOI 10.1073/pnas.1616515114
  69. Keren NI, 2015, NEUROIMAGE, V113, P235, DOI 10.1016/j.neuroimage.2015.03.020
  70. Keren NI, 2009, NEUROIMAGE, V47, P1261, DOI 10.1016/j.neuroimage.2009.06.012
  71. Knudsen K, 2018, LANCET NEUROL, V17, P618, DOI 10.1016/S1474-4422(18)30162-5
  72. Krebs N, 2014, J TRACE ELEM MED BIO, V28, P1, DOI 10.1016/j.jtemb.2013.09.006
  73. Lanctot Krista L, 2017, Alzheimers Dement (N Y), V3, P440, DOI 10.1016/j.trci.2017.07.001
  74. Langley J, 2017, MAGN RESON MATER PHY, V30, P121, DOI 10.1007/s10334-016-0590-z
  75. Langley J, 2015, NEUROIMAGE, V112, P7, DOI 10.1016/j.neuroimage.2015.02.045
  76. Lee CM, 2018, J ALZHEIMERS DIS, V62, P1691, DOI 10.3233/JAD-170840
  77. Liu KY, 2019, NEUROBIOL AGING, V74, P101, DOI 10.1016/j.neurobiolaging.2018.10.014
  78. Liu KY, 2017, NEUROSCI BIOBEHAV R, V83, P325, DOI 10.1016/j.neubiorev.2017.10.023
  79. Llorca-Torralba M, 2016, NEUROSCIENCE, V338, P93, DOI 10.1016/j.neuroscience.2016.05.057
  80. Louis ED, 2007, BRAIN, V130, P3297, DOI 10.1093/brain/awm266
  81. Lyness SA, 2003, NEUROBIOL AGING, V24, P1, DOI 10.1016/S0197-4580(02)00057-X
  82. MANAYE KF, 1995, J COMP NEUROL, V358, P79, DOI 10.1002/cne.903580105
  83. MANN DMA, 1974, BRAIN, V97, P489, DOI 10.1093/brain/97.1.489
  84. Marquie M, 2015, ANN NEUROL, V78, P787, DOI 10.1002/ana.24517
  85. Mather M, 2016, TRENDS COGN SCI, V20, P214, DOI 10.1016/j.tics.2016.01.001
  86. Mather M, 2016, BEHAV BRAIN SCI, V39, DOI 10.1017/S0140525X15000667
  87. Matsuura K, 2013, EUR NEUROL, V70, P70, DOI 10.1159/000350291
  88. McMillan PJ, 2011, BRAIN RES, V1373, P240, DOI 10.1016/j.brainres.2010.12.015
  89. MOISES HC, 1981, BRAIN RES, V222, P43, DOI 10.1016/0006-8993(81)90939-2
  90. Nakane Toshiki, 2008, Magn Reson Med Sci, V7, P205
  91. O'Donnell John, 2015, Curr Sleep Med Rep, V1, P1
  92. Ohm TG, 1997, NEUROBIOL AGING, V18, P393, DOI 10.1016/S0197-4580(97)00034-1
  93. PALMER AM, 1987, BRAIN RES, V401, P231, DOI 10.1016/0006-8993(87)91408-9
  94. Palmqvist S, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01150-x
  95. Passamonti L, 2018, CURR OPIN BEHAV SCI, V22, P14, DOI 10.1016/j.cobeha.2017.12.015
  96. Pietrzak RH, 2013, JAMA PSYCHIAT, V70, P1199, DOI 10.1001/jamapsychiatry.2013.399
  97. Priovoulos N, 2018, NEUROIMAGE, V168, P427, DOI 10.1016/j.neuroimage.2017.07.045
  98. ROBBINS TW, 1984, PSYCHOL MED, V14, P13, DOI 10.1017/S0033291700003032
  99. Robertson IH, 2013, NEUROBIOL AGING, V34, P298, DOI 10.1016/j.neurobiolaging.2012.05.019
  100. Rorabaugh JM, 2017, BRAIN, V140, P3023, DOI 10.1093/brain/awx232
  101. Roy B, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04300-9
  102. Sara SJ, 2009, NAT REV NEUROSCI, V10, P211, DOI 10.1038/nrn2573
  103. Sasaki M, 2006, NEUROREPORT, V17, P1215, DOI 10.1097/01.wnr.0000227984.84927.a7
  104. Seidel K, 2015, BRAIN PATHOL, V25, P121, DOI 10.1111/bpa.12168
  105. Sharma Y, 2010, J COMP NEUROL, V518, P963, DOI 10.1002/cne.22249
  106. Shibata Eri, 2006, Magn Reson Med Sci, V5, P197, DOI 10.2463/mrms.5.197
  107. Shima T, 1997, FREE RADICAL BIO MED, V23, P110, DOI 10.1016/S0891-5849(96)00623-5
  108. Sommerauer M, 2018, BRAIN, V141, P496, DOI 10.1093/brain/awx348
  109. Stankovic I, 2014, MOVEMENT DISORD, V29, P857, DOI 10.1002/mds.25880
  110. Stein TD, 2014, ALZHEIMERS RES THER, V6, DOI 10.1186/alzrt234
  111. Stern RA, 2013, NEUROLOGY, V81, P1122, DOI 10.1212/WNL.0b013e3182a55f7f
  112. Sterpenich V, 2006, J NEUROSCI, V26, P7416, DOI 10.1523/JNEUROSCI.1001-06.2006
  113. Stratmann K, 2016, BRAIN PATHOL, V26, P371, DOI 10.1111/bpa.12289
  114. Sulzer D, 2018, NPJ PARKINSON DIS, V4, DOI 10.1038/s41531-018-0047-3
  115. Tabrez S, 2012, CNS NEUROL DISORD-DR, V11, P395, DOI 10.2174/187152712800792785
  116. Takeuchi T, 2016, NATURE, V537, P357, DOI 10.1038/nature19325
  117. Taylor BK, 2017, J NEUROSCI RES, V95, P1336, DOI 10.1002/jnr.23956
  118. TERRY RD, 1991, ANN NEUROL, V30, P572, DOI 10.1002/ana.410300410
  119. Theofilas P, 2017, ALZHEIMERS DEMENT, V13, P236, DOI 10.1016/j.jalz.2016.06.2362
  120. Tona KD, 2017, BRAIN STRUCT FUNCT, V222, P4203, DOI 10.1007/s00429-017-1464-5
  121. Trujillo P, 2017, MAGN RESON MED, V78, P1790, DOI 10.1002/mrm.26584
  122. Van Bockstaele EJ, 1998, J NEUROENDOCRINOL, V10, P743, DOI 10.1046/j.1365-2826.1998.00254.x
  123. Wakamatsu K, 2015, J NEUROCHEM, V135, P768, DOI 10.1111/jnc.13237
  124. Walsh RR, 2018, NEUROLOGY, V90, P74, DOI 10.1212/WNL.0000000000004798
  125. Ward R, 2014, LANCET NEUROL, V13, P1045, DOI 10.1016/S1474-4422(14)70117-6
  126. Watanabe T, 2019, BRAIN STRUCT FUNCT, V224, P1609, DOI 10.1007/s00429-019-01858-0
  127. Weinshenker D, 2018, TRENDS NEUROSCI, V41, P211, DOI 10.1016/j.tins.2018.01.010
  128. Weiskopf N, 2018, FRONT NEUROSCI, V2013, P7
  129. Wilson RS, 2013, NEUROLOGY, V80, P1202, DOI 10.1212/WNL.0b013e3182897103
  130. Ye Z, 2015, BIOL PSYCHIAT, V77, P740, DOI 10.1016/j.biopsych.2014.01.024
  131. Zarow C, 2003, ARCH NEUROL-CHICAGO, V60, P337, DOI 10.1001/archneur.60.3.337
  132. Zecca L, 2004, P NATL ACAD SCI USA, V101, P9843, DOI 10.1073/pnas.0403495101
  133. Zucca FA, 2006, J NEURAL TRANSM, V113, P757, DOI 10.1007/s00702-006-0453-2
  134. Zucca FA, 2018, NPJ PARKINSON DIS, V4, DOI 10.1038/s41531-018-0050-8
  135. Zucca FA, 2017, PROG NEUROBIOL, V155, P96, DOI 10.1016/j.pneurobio.2015.09.012