Analysis of Raman spectroscopy data with algorithms based on paraconsistent logic for characterization of skin cancer lesions

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
GARCIA, Dorotea Vilanova
SILVA FILHO, Joao Inacio da
SILVEIRA JR., Landulfo
PACHECO, Marcos Tadeu Tavares
ABE, Jair Minoro
CARVALHO JR., Arnaldo
BLOS, Mauricio Fontoura
MARIO, Mauricio Conceicao
Citação
VIBRATIONAL SPECTROSCOPY, v.103, article ID 102929, 10p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Analysis of the Raman data to obtain results in discrimination models is usually done with multivariate statistics based on principal component analysis (PCA). In this work, we present a technique based on a non-classical logic called paraconsistent logic (PL). The aim of this work is to use computational procedures capable of generating efficient expert systems to discriminate cutaneous tissue samples obtained by Raman spectroscopy. First, a set of algorithms originating from PL is presented, and then its application in discrimination analyses is described; the discrimination analysis was conducted using a database of skin tissue samples obtained ex vivo by Raman spectroscopy of spectrum range of 400-1800 cm(-1) wavelengths. Data processing, pattern creation, and comparisons were performed using the set of paraconsistent algorithms (SPA-PAL2v). The total number of samples was divided into four histopathological groups, with 115 spectra of basal cell carcinoma (BCC), 21 spectra of squamous cell carcinoma (SCC), 57 spectra of actinic keratosis (AK), and 30 normal skin (NO) spectra. An arrangement type was created for this study, and the samples were randomly selected and analyzed, and the NO group was compared with the group of non-melanoma cancer lesions (BCC + SCC) and the AK tumor lesion. Two analyses were performed. The first (SPA-PAL2v) Mode 1 (no cross-validation) achieved 76% of hits, and the second (SPA-PAL2v) Mode 2 (with cross-validation) achieved 75.78% of hits. These results were compared with discrimination using PCA statistical methods (PCA/DA) and presented superior percentages of hits, which proves the robustness of the SPA-PAL2v, confirming its potential for Raman spectrum data analysis.
Palavras-chave
Raman spectroscopy, Algorithms, Skin cancer, Paraconsistent annotated logic, Medical diagnosis
Referências
  1. Bodanese B, 2010, PHOTOMED LASER SURG, V28, pS119, DOI 10.1089/pho.2009.2565
  2. Crow P, 2005, UROLOGY, V65, P1126, DOI 10.1016/j.urology.2004.12.058
  3. da Costa N, 2013, FOUND PHYS, V43, P845, DOI 10.1007/s10701-013-9721-9
  4. da Costa N. C. A., 1974, Notre Dame Journal of Formal Logic, V15, P497, DOI 10.1305/ndjfl/1093891487
  5. Da Silva Filho J.I., 2010, UNCERTAINTY TREATMEN, P320
  6. Da Silva Filho J.I., 2011, EXPERT SYSTEM SOFTWA
  7. Da Silva Filho J. I., 2011, J SOFTW ENG APPL, V4, P579
  8. Da Silva JI, 2016, MED BIOL ENG COMPUT, V54, P1453, DOI 10.1007/s11517-016-1471-3
  9. da Silva JI, 2009, STUD COMPUT INTELL, V199, P295
  10. Dietterich TG, 1998, NEURAL COMPUT, V10, P1895, DOI 10.1162/089976698300017197
  11. Ferraro J.R., 1994, INTRO RAMAN SPECTROS
  12. Lima AMF, 2019, VIB SPECTROSC, V100, P131, DOI 10.1016/j.vibspec.2018.11.009
  13. Gniadecka M, 2004, J INVEST DERMATOL, V122, P443, DOI 10.1046/j.0022-202X.2004.22208.x
  14. Haka AS, 2005, P NATL ACAD SCI USA, V102, P12371, DOI 10.1073/pnas.0501390102
  15. Hastie T., 2011, ELEMENTS STAT LEARNI
  16. Huang ZW, 2010, BIOSENS BIOELECTRON, V26, P383, DOI 10.1016/j.bios.2010.07.125
  17. Kendall C, 2011, FARADAY DISCUSS, V149, P279, DOI 10.1039/c005379a
  18. Lieber CA, 2008, LASER SURG MED, V40, P461, DOI 10.1002/lsm.20653
  19. Lorincz A, 2004, J PEDIATR SURG, V39, P953, DOI 10.1016/j.jpedsurg.2004.02.043
  20. Magee ND, 2009, J PHYS CHEM B, V113, P8137, DOI 10.1021/jp900379w
  21. Magee ND, 2010, J BIOMED OPT, V15, DOI 10.1117/1.3323088
  22. Nakazawa K, 1998, MED BIOL ENG COMPUT, V36, P813, DOI 10.1007/BF02518888
  23. Ng VTY, 2005, COMPUT BIOL MED, V35, P103, DOI 10.1016/j.compbiomed.2003.11.004
  24. Nystrom J, 2003, MED BIOL ENG COMPUT, V41, P324, DOI 10.1007/BF02348438
  25. Oshiyama NF, 2012, MED BIOL ENG COMPUT, V50, P395, DOI 10.1007/s11517-012-0888-6
  26. Silveira FL, 2015, LASER SURG MED, V47, P6, DOI 10.1002/lsm.22318
  27. Silveira Jr L., 2012, J BIOMED OPT, V17, P152
  28. World Health Organization (WHO), 2009, ULTR RAD GLOB SOL UV