Effects of Protective Mechanical Ventilation With Different PEEP Levels on Alveolar Damage and Inflammation in a Model of Open Abdominal Surgery: A Randomized Study in Obese Versus Non-obese Rats

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
MAIA, Ligia de A.
FERNANDES, Marcos V. S.
SANTOS, Raquel S.
AGRA, Lais C.
CARVALHO, Anna Carolinna
ROCHA, Nazareth de N.
V, Milena Oliveira
SANTOS, Cntia L.
MORALES, Marcelo M.
Citação
FRONTIERS IN PHYSIOLOGY, v.10, article ID 1513, 10p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Intraoperative positive end-expiratory pressure (PEEP) has been proposed to restore lung volumes and improve respiratory function in obesity. However, the biological impact of different PEEP levels on the lungs in obesity remains unknown. We aimed to compare the effects of PEEP = 2 cmH(2)O versus PEEP = 6 cmH(2)O during ventilation with low tidal volumes on lung function, histology, and biological markers in obese and non-obese rats undergoing open abdominal surgery. Forty-two Wistar rats (21 obese, 21 non-obese) were anesthetized and tracheotomized, and laparotomy was performed with standardized bowel manipulation. Rats were randomly ventilated with protective tidal volume (7 ml/kg) at PEEP = 2 cmH(2)O or PEEP = 6 cmH(2)O for 4 h, after which they were euthanized. Lung mechanics and histology, alveolar epithelial cell integrity, and biological markers associated with pulmonary inflammation, alveolar stretch, extracellular matrix, and epithelial and endothelial cell damage were analyzed. In obese rats, PEEP = 6 cmH(2)O compared with PEEP = 2 cmH(2)O was associated with less alveolar collapse (p = 0.02). E-cadherin expression was not different between the two PEEP groups. Gene expressions of interleukin (IL)-6 (p = 0.01) and type III procollagen (p = 0.004), as well as protein levels of tumor necrosis factor-alpha (p = 0.016), were lower at PEEP = 6 cmH(2)O than at PEEP = 2 cmH(2)O. In non-obese animals, PEEP = 6 cmH(2)O compared with PEEP = 2 cmH(2)O led to increased hyperinflation, reduced e-cadherin (p = 0.04), and increased gene expression of IL-6 (p = 0.004) and protein levels of tumor necrosis factor-alpha (p-0.029), but no changes in fibrogenesis. In conclusion, PEEP = 6 cmH(2)O reduced lung damage and inflammation in an experimental model of mechanical ventilation for open abdominal surgery, but only in obese animals.
Palavras-chave
inflammation, epithelial cell damage, mechanical ventilation, positive-end expiratory pressure, obesity
Referências
  1. Ball L, 2018, BRIT J ANAESTH, V121, P899, DOI 10.1016/j.bja.2018.04.021
  2. Heil LBB, 2016, ANESTH ANALG, V122, P1015, DOI 10.1213/ANE.0000000000001114
  3. Bilek AM, 2003, J APPL PHYSIOL, V94, P770, DOI 10.1152/japplphysiol.00764.2002
  4. Bluth T, 2019, JAMA-J AM MED ASSOC, V321, P2292, DOI 10.1001/jama.2019.7505
  5. Caironi P, 2011, INTENS CARE MED, V37, P1913, DOI 10.1007/s00134-011-2388-9
  6. Dolinay T, 2004, AM J RESP CRIT CARE, V170, P613, DOI 10.1164/rccm.200401-023OC
  7. Farias LL, 2005, J APPL PHYSIOL, V98, P53, DOI 10.1152/japplphysiol.00118.2004
  8. Felix NS, 2019, ANESTHESIOLOGY, V130, P767, DOI 10.1097/ALN.0000000000002630
  9. Ferrando C, 2018, LANCET RESP MED, V6, P193, DOI 10.1016/S2213-2600(18)30024-9
  10. Futier E, 2013, NEW ENGL J MED, V369, P428, DOI 10.1056/NEJMoa1301082
  11. Goldenberg NM, 2014, ANESTHESIOLOGY, V121, P184, DOI 10.1097/ALN.0000000000000274
  12. Goto Y, 2000, AM J RESP CELL MOL, V23, P712, DOI 10.1165/ajrcmb.23.6.4031
  13. Guldner A, 2015, ANESTHESIOLOGY, V123, P692, DOI 10.1097/ALN.0000000000000754
  14. Hedenstierna G, 2010, BEST PRACT RES-CLIN, V24, P157, DOI 10.1016/j.bpa.2009.12.002
  15. Hemmes SNT, 2014, LANCET, V384, P495, DOI 10.1016/S0140-6736(14)60416-5
  16. Hsia CCW, 2010, AM J RESP CRIT CARE, V181, P394, DOI 10.1164/rccm.200809-1522ST
  17. Imber DAE, 2016, RESP CARE, V61, P1681, DOI 10.4187/respcare.04732
  18. KASPER M, 1995, HISTOCHEM CELL BIOL, V104, P383, DOI 10.1007/BF01458132
  19. Kilkenny C, 2010, J PHARMACOL PHARMACO, V1, P94, DOI 10.4103/0976-500X.72351
  20. Kordonowy LL, 2012, AM J RESP CELL MOL, V47, P120, DOI 10.1165/rcmb.2011-0334OC
  21. Silva PL, 2012, MINERVA ANESTESIOL, V78, P1136
  22. Mafia LDA, 2017, ANESTH ANALG, V125, P1364, DOI 10.1213/ANE.0000000000002348
  23. Maia LD, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01215
  24. Mancuso P, 2010, J APPL PHYSIOL, V108, P722, DOI 10.1152/japplphysiol.00781.2009
  25. MORTOLA JP, 1983, J APPL PHYSIOL, V55, P250
  26. Nestler C, 2017, BRIT J ANAESTH, V119, P1194, DOI 10.1093/bja/aex192
  27. Neto AS, 2017, EUR J ANAESTH, V34, P229, DOI 10.1097/EJA.0000000000000614
  28. Passaro CP, 2009, CRIT CARE MED, V37, P1011, DOI 10.1097/CCM.0b013e3181962d85
  29. Pelosi P, 2010, BEST PRACT RES-CLIN, V24, P211, DOI 10.1016/j.bpa.2010.02.001
  30. Pereira SM, 2018, ANESTHESIOLOGY, V129, P1070, DOI 10.1097/ALN.0000000000002435
  31. Pirrone M, 2016, CRIT CARE MED, V44, P300, DOI 10.1097/CCM.0000000000001387
  32. PLAGEMANN A, 1992, EXP CLIN ENDOCRINOL, V99, P154, DOI 10.1055/s-0029-1211159
  33. Reinius H, 2009, ANESTHESIOLOGY, V111, P979, DOI 10.1097/ALN.0b013e3181b87edb
  34. Samary CS, 2015, ANESTHESIOLOGY, V123, P423, DOI 10.1097/ALN.0000000000000716
  35. Schmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73
  36. Schumann R, 2015, BRIT J ANAESTH, V114, P83, DOI 10.1093/bja/aeu362
  37. Severgnini P, 2013, ANESTHESIOLOGY, V118, P1307, DOI 10.1097/ALN.0b013e31829102de
  38. Spieth PM, 2015, ANESTHESIOLOGY, V122, P106, DOI 10.1097/ALN.0000000000000415
  39. West D, 2013, PHYS LIFE REV, V10, P210, DOI 10.1016/j.plrev.2013.04.006
  40. Wierzchon CGRS, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.01071