Assessment of the microgeographic population structure of Aedes fluviatilis (Diptera: Culicidae) using wing geometric morphometrics

Nenhuma Miniatura disponível
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
E SCHWEIZERBARTSCHE VERLAGSBUCHHANDLUNG
Autores
MARRELLI, Mauro Toledo
VIDAL, Paloma Oliveira
WILKE, Andre Barretto Bruno
Autor de Grupo de pesquisa
Citação
ENTOMOLOGIA GENERALIS, v.39, n.3/Abr, p.183-191, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aedes fluviatilis (Lutz 1904) is a highly anthropophilic mosquito found in the New World from Argentina to Mexico. Environmental changes, such as those resulting from urbanization, may lead to population structure in mosquitoes. As exogenous factors may be acting on and influencing Ae. fluviatilis population dynamics, this study sought to assess population structure patterns in this species in the city of Sao Paulo, Brazil, with the aid of wing geometric morphometrics, a widely used and reliable tool for studying microevolution. Multivariate analysis revealed variation among wing shape of Ae. fluviatilis in the different urban parks. Our results indicated that both male and female populations studied here were distributed homogeneously in morpho space with signs of population structuring. The differences in the male and female Neighbor Joining phenograms based on wing shape variations indicate that there is a difference in population structure between male and female populations, with higher differentiation in males. The values of Mahalanobis Distances between populations of females and males were relatively high considering that the specimens analyzed have low variation in space and time (specimens were collected in locations no more than 20 km apart over one year period). Wing geometric morphometrics analysis of Ae. fluviatilis showed that populations of males and females have a distinct structuration, which reflected in the distinct wing shape variations found for each gender, in which males displayed greater wing shape variation than females.
Palavras-chave
Mosquito, Neglected Vectors, Microevolution, Population Structure, Urbanization
Referências
  1. Benelli G, 2017, ENTOMOL GEN, V36, P309, DOI 10.1127/entomologia/2017/0496
  2. Wilke ABB, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0185150
  3. Wilke ABB, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161643
  4. Carvajal TM, 2016, J VECTOR DIS, V53, P127
  5. Ceretti W, 2015, J AM MOSQUITO CONTR, V31, P172, DOI 10.2987/14-6457R
  6. Christe RD, 2016, INFECT GENET EVOL, V45, P434, DOI 10.1016/j.meegid.2016.10.007
  7. Consoli R. A. G. B, 1994, PRINCIPAIS MOSQUITOS, DOI [10.7476/9788575412909, DOI 10.7476/9788575412909]
  8. DAVIS N. C., 1931, American Journal of Tropical Medicine, V11, P21
  9. de Carvalho GC, 2017, PARASITE VECTOR, V10, DOI 10.1186/s13071-017-2348-5
  10. de Carvalho GC, 2014, J VECTOR ECOL, V39, P146, DOI 10.1111/j.1948-7134.2014.12081.x
  11. de Paula MB, 2015, BIOTA NEOTROP, V15, DOI 10.1590/1676-0611-BN-2014-0026
  12. Debat V, 2008, J GENET, V87, P407, DOI 10.1007/s12041-008-0063-x
  13. Devicari M, 2011, BIOTA NEOTROP, V11, P165, DOI 10.1590/S1676-06032011000200016
  14. Dujardin J. P, 2007, ENCY INFECT DIS
  15. Dujardin JP, 2008, INFECT GENET EVOL, V8, P875, DOI 10.1016/j.meegid.2008.07.011
  16. Forattini O. P, 2002, CULICIDOLOGIA MED
  17. Henry A, 2010, INFECT GENET EVOL, V10, P207, DOI 10.1016/j.meegid.2009.12.001
  18. Klingenberg CP, 2011, MOL ECOL RESOUR, V11, P353, DOI 10.1111/j.1755-0998.2010.02924.x
  19. Klowden MJ, 1999, J AM MOSQUITO CONTR, V15, P213
  20. Labarthe N, 2005, VET PARASITOL, V133, P149, DOI 10.1016/j.vetpar.2005.04.006
  21. Lorenz C, 2017, INFECT GENET EVOL, V54, P205, DOI 10.1016/j.meegid.2017.06.029
  22. Louise C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137851
  23. Medeiros-Sousa AR, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-18208-x
  24. Medeiros-Sousa AR, 2013, J AM MOSQUITO CONTR, V29, P275, DOI 10.2987/12-6304R.1
  25. Multini LC, 2019, ACTA TROP, V190, P30, DOI 10.1016/j.actatropica.2018.10.009
  26. Multini LC, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162328
  27. Petersen V, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0740-6
  28. Rohlf F.J, 2004, TPSDIG DIGITIZE LAND
  29. Santos MN, 2010, TRANSGENIC RES, V19, P1129, DOI 10.1007/s11248-010-9375-8
  30. Secretaria do Verde e Meio Ambiente Prefeitura Municipal de Sao Paulo, 2014, GUIA PARQ MUN SAO PA
  31. Taipe-Lagos CB, 2003, REV SAUDE PUBL, V37, P275, DOI 10.1590/S0034-89102003000300002
  32. Tason de Camargo M.V., 1983, Memorias do Instituto Oswaldo Cruz, V78, P83
  33. Vidal PO, 2012, MEM I OSWALDO CRUZ, V107, P1030, DOI 10.1590/S0074-02762012000800011
  34. Vidal PO, 2012, INFECT GENET EVOL, V12, P591, DOI 10.1016/j.meegid.2011.11.013
  35. Virginio F, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0769-6
  36. Wilk-da-Silva R, 2018, PARASITE VECTOR, V11, DOI 10.1186/s13071-018-3154-4
  37. Wilke ABB, 2018, INFECT GENET EVOL, V65, P333, DOI 10.1016/j.meegid.2018.08.017