ATR-FTIR spectroscopy and CDKN1C gene expression in the prediction of lymph nodes metastases in papillary thyroid carcinoma

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Autores
SILVA, Raissa Monteiro da
PUPIN, Breno
BHATTACHARJEE, Tanmoy Tapobrata
CANEVARI, Renata de Azevedo
Citação
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, v.228, article ID 117693, 7p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Thyroid cancer has become in recent years the most common endocrine malignancy. Among its different types, papillary thyroid carcinoma (PTC) has the highest incidence. PTC is slow growing, but shows a high rate of lymph node metastasis. Tissue biochemical characterization and identification of molecular markers can facilitate stratification of patients into those requiring surgical assessment of lymph nodes and patients for whom this surgical procedure is unnecessary; thus, leading to a more accurate prognosis. To this end, the study aimed to predict lymph node metastasis by Attenuated Total Reflectance Fourier transform infrared (ATR-FTIR) spectroscopy of primary PTC tumors. Another objective of the study was to determine whether CCNA1, CDKN1C, FOS, HSPA5, JUN, KSR1, MAP2K6, MAPK8IP2 and SFN gene expression in primary PTC tumors could be used as predictive markers of lymph node metastasis. Three PTC with lymph node involvement (PTC+), six PTC without lymph node involvement (PTC-), and five normal (N) thyroid tissues were used for FTIR spectroscopy analysis; while 18 PTC+, 17 PTC-, and 6 N samples were used for molecular analysis by real-time quantitative PCR (RT-qPCR). FTIR spectral analysis revealed changes in phosphate groups possibly associated with nucleic acid (1236 cm(-1)), and protein/lipids (1452, 2924, 3821 cm(-1)) in PTC + compared to PTC-, and multivariate analysis could distinguish the two groups. Molecular analysis showed significant increase in CDKN1C gene expression in PTC + compared to PTC-. Being a cell growth regulator, increased CDKN1C provides some supporting evidence to the FTIR spectroscopy based finding of increased nucleic acids in PTC+. Thus, the study suggests the possibility of using FTIR spectroscopy and CDKN1C expression for predicting metastasis using primary tumor alone.
Palavras-chave
Papillary thyroid cancer, Lymph nodes metastases, FTIR, Spectroscopy, Gene expression, Predictive molecular markers, CDKN1C gene
Referências
  1. Alabbas H, 2016, GLAND SURG, V5, P603, DOI 10.21037/gs.2016.12.06
  2. Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI 10.3322/caac.21492
  3. Cha YJ, 2016, J TRANSL MED, V14, DOI 10.1186/s12967-016-1074-7
  4. Chang YW, 2017, ANN SURG TREAT RES, V92, P117, DOI 10.4174/astr.2017.92.3.117
  5. Choi KY, 2018, CANCER BIOMARK, V22, P35, DOI 10.3233/CBM-170784
  6. Cuevas BD, 2007, ONCOGENE, V26, P3159, DOI 10.1038/sj.onc.1210409
  7. De Crea C, 2017, UPDATES SURG, V69, P205, DOI 10.1007/s13304-017-0468-2
  8. Depciuch J, 2018, SPECTROCHIM ACTA A, V204, P18, DOI 10.1016/j.saa.2018.06.010
  9. Eggermann T, 2014, TRENDS MOL MED, V20, P614, DOI 10.1016/j.molmed.2014.09.001
  10. Engstrom W, 2010, CELL PROLIFERAT, V43, P56, DOI 10.1111/j.1365-2184.2009.00654.x
  11. Gietka-Czernel M, 2017, MENOPAUSE REV, V16, P33, DOI 10.5114/pm.2017.68588
  12. Guan HY, 2017, BMC CANCER, V17, DOI 10.1186/s12885-017-3475-2
  13. Guo K, 2014, INT J CLIN EXP PATHO, V7, P5393
  14. Hu JX, 2017, CANCER BIOMARK, V18, P87, DOI 10.3233/CBM-161723
  15. Jia H, 2015, ONCOGENE, V34, P3568, DOI 10.1038/onc.2014.287
  16. Jung SH, 2016, ONCOTARGET, V7, P69638, DOI 10.18632/oncotarget.11922
  17. Kim DK, 2015, J LARYNGOL OTOL, V129, P168, DOI 10.1017/S0022215114003351
  18. Lai SL, 2000, CLIN CANCER RES, V6, P3172
  19. Lan XB, 2018, GENE, V646, P98, DOI 10.1016/j.gene.2017.12.051
  20. Landriscina M, 2015, ONCOL LETT, V10, P1875, DOI 10.3892/ol.2015.3386
  21. Lee J, 2015, J MOL ENDOCRINOL, V54, P115, DOI 10.1530/JME-14-0270
  22. Lee SH, 2010, OTOLARYNG HEAD NECK, V142, P332, DOI 10.1016/j.otohns.2009.10.050
  23. Li XM, 2018, ONCOGENE, V37, P2773, DOI 10.1038/s41388-017-0090-2
  24. Liang WW, 2015, ONCOTARGET, V6, P31780, DOI 10.18632/oncotarget.5566
  25. Lin MB, 2015, ONCOTARGET, V6, P16774, DOI 10.18632/oncotarget.3736
  26. Liu Y, 2011, BRIT J SURG, V98, P380, DOI 10.1002/bjs.7330
  27. Liu YQ, 2009, SPECTROSC SPECT ANAL, V29, P2917, DOI 10.3964/j.issn.1000-0593(2009)11-2917-05
  28. Maia FFR, 2016, EXP CLIN ENDOCR DIAB, V124, P209, DOI 10.1055/s-0035-1569363
  29. Manzella L, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18061325
  30. Marotta V, 2016, ENDOCR-RELAT CANCER, V23, pR499, DOI 10.1530/ERC-16-0372
  31. Martinez-Marin D, 2017, VIB SPECTROSC, V91, P77, DOI 10.1016/j.vibspec.2016.09.014
  32. Matsumoto M, 2000, ANTICANCER RES, V20, P1947
  33. Movasaghi Z, 2008, APPL SPECTROSC REV, V43, P134, DOI 10.1080/05704920701829043
  34. Nabhan F, 2017, ENDOCR-RELAT CANCER, V24, pR13, DOI 10.1530/ERC-16-0432
  35. Park YG, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173203
  36. Pellegriti G, 2013, J CANCER EPIDEMIOL, DOI 10.1155/2013/965212
  37. Penna GC, 2016, CYTOGENET GENOME RES, V150, P194, DOI 10.1159/000456576
  38. Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45
  39. Qiu Z, 2018, BIOCHEM BIOPH RES CO, V497, P187, DOI 10.1016/j.bbrc.2018.02.052
  40. Rossi MN, 2018, FRONT BIOSCI-LANDMRK, V23, P83, DOI 10.2741/4583
  41. Bertoni APS, 2019, MOL CELL ENDOCRINOL, V479, P54, DOI 10.1016/j.mce.2018.08.013
  42. Silva R.M., 2018, 22 ENC LAT AM IN CIE
  43. Wald N, 2016, BBA-MOL BASIS DIS, V1862, P202, DOI 10.1016/j.bbadis.2015.11.008
  44. Wu M, 2016, INT J CLIN EXP MED, V9, P2351
  45. Zaballos MA, 2017, J ENDOCRINOL, V235, pR43, DOI 10.1530/JOE-17-0266
  46. Zhang WT, 2015, CHEM RES CHINESE U, V31, P198, DOI 10.1007/s40242-015-4354-5
  47. Zhang XQ, 2011, J SURG RES, V171, P650, DOI 10.1016/j.jss.2010.05.031