Interactive Video Gaming Improves Functional Balance in Poststroke Individuals: Meta-Analysis of Randomized Controlled Trials

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS INC
Autores
FERREIRA, Vilma
JR, Nelson Carvas
ARTILHEIRO, Mariana Cunha
HASSAN, Syed Ahmed
KASAWARA, Karina Tamy
Citação
EVALUATION & THE HEALTH PROFESSIONS, v.43, n.1, p.23-32, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The main objective of this study was to evaluate the effects of interactive video games on functional balance and mobility in poststroke individuals. The Health Science databases accessed included Medline via PubMed, LILACS, SciELO, and PEDro. The inclusion criteria were as follows: clinical studies evaluating the use of interactive video games as a treatment to improve functional balance and mobility in individuals poststroke and studies published in the Brazilian Portuguese, English, or Spanish language between 2005 and April 2016. PEDro Scale was used to analyze the methodological quality of the studies. The Berg Balance Scale and Timed Up and Go Test (TUGT) data were evaluated using a meta-analysis, the publication bias was assessed by funnel plots, and the heterogeneity of the studies by I (2) statistic. Eleven studies were included in the final analysis. Functional balance improved in individuals treated using interactive video games (mean difference = 2.24, 95% confidence interval [0.45, 4.04], p = .01), but no improvement was observed in mobility as measured by TUGT. The studies presented low heterogeneity (24%). The mean score on the PEDro Scale was 6.2 +/- 1.9. Interactive video games were effective in improving functional balance but did not influence the mobility of individuals poststroke.
Palavras-chave
stroke, virtual reality, postural control, balance, physical therapy, rehabilitation
Referências
  1. Barcala L, 2013, J PHYS THER SCI, V25, P1027, DOI 10.1589/jpts.25.1027
  2. Barry E, 2014, BMC GERIATR, V14, DOI 10.1186/1471-2318-14-14
  3. Bischoff HA, 2003, AGE AGEING, V32, P315, DOI 10.1093/ageing/32.3.315
  4. Bower KJ, 2014, CLIN REHABIL, V28, P912, DOI 10.1177/0269215514527597
  5. Brady MC, 2012, COCHRANE DB SYST REV, DOI [10.1002/14651858.CD000425.pub2, 10.1002/14651858.CD000425.pub3]
  6. Brunner IC, 2014, NEUROREHAB NEURAL RE, V28, P874, DOI 10.1177/1545968314527350
  7. Callaly EL, 2015, AGE AGEING, V44, P882, DOI 10.1093/ageing/afv093
  8. Canadian Partnership for Stroke Recovery, PEDRO SCOR STROK ENG
  9. Carmo Julia Fabres do, 2015, Fisioter. mov., V28, P407, DOI 10.1590/0103-5150.028.002.AR02
  10. Centers for Disease Control and Prevention. National Center for Chronic Disease Prevention and Health Promotion Division for Heart Disease and Stroke Prevention, 2017, STROK FACTS
  11. Cho KH, 2013, AM J PHYS MED REHAB, V92, P371, DOI 10.1097/PHM.0b013e31828cd5d3
  12. Cho KH, 2012, TOHOKU J EXP MED, V228, P69, DOI 10.1620/tjem.228.69
  13. Chou CY, 2006, PHYS THER, V86, P195, DOI 10.1093/ptj/86.2.195
  14. Da L., 2013, REVRENE, V14, P920
  15. Ribeiro NMD, 2015, TOP STROKE REHABIL, V22, P299, DOI 10.1179/1074935714Z.0000000017
  16. de Morton NA, 2009, AUST J PHYSIOTHER, V55, P129, DOI 10.1016/S0004-9514(09)70043-1
  17. de Rooij IJM, 2017, INT J PHYS MED REHAB, V5, P418, DOI [10.4172/2329-9096.1000418, DOI 10.4172/2329-9096.1000418]
  18. DERSIMONIAN R, 1986, CONTROL CLIN TRIALS, V7, P177, DOI 10.1016/0197-2456(86)90046-2
  19. Dobkin BH, 2004, LANCET NEUROL, V3, P528, DOI 10.1016/S1474-4422(04)00851-8
  20. FOLLMANN D, 1992, J CLIN EPIDEMIOL, V45, P769, DOI 10.1016/0895-4356(92)90054-Q
  21. Fritz SL, 2013, TOP STROKE REHABIL, V20, P218, DOI 10.1310/tsr2003-218
  22. Gervasoni E, 2017, ARCH PHYS MED REHAB, V98, P337, DOI 10.1016/j.apmr.2016.09.128
  23. Hung JW, 2014, ARCH PHYS MED REHAB, V95, P1629, DOI 10.1016/j.apmr.2014.04.029
  24. Juneja G, 1998, AM J PHYS MED REHAB, V77, P388, DOI 10.1097/00002060-199809000-00005
  25. Kelley George A, 2012, World J Methodol, V2, P27, DOI 10.5662/wjm.v2.i4.27
  26. Kim N, 2015, J PHYS THER SCI, V27, P655, DOI 10.1589/jpts.27.655
  27. Laver KE, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008349.pub3
  28. Li Z, 2016, CLIN REHABIL, V30, P432, DOI 10.1177/0269215515593611
  29. Llorens R, 2015, CLIN REHABIL, V29, P261, DOI 10.1177/0269215514543333
  30. Mao HF, 2002, STROKE, V33, P1022, DOI 10.1161/01.STR.0000012516.63191.C5
  31. McEwen D, 2014, STROKE, V45, P1853, DOI 10.1161/STROKEAHA.114.005362
  32. Morone G, 2014, BIOMED RES INT, DOI 10.1155/2014/580861
  33. Mozaffarian D, 2015, CIRCULATION, V131, pE29, DOI 10.1161/CIR.0000000000000152
  34. Padula Rosimeire S., 2012, Braz. J. Phys. Ther., V16, P381
  35. Pinto EB, 2014, TOP STROKE REHABIL, V21, P220, DOI [10.1310/tsr2103-220, 10.1310/tscir2101-220]
  36. Pompeu José Eduardo, 2014, Motri., V10, P111, DOI 10.6063/motricidade.10(4).3341
  37. Rajaratnam BS, 2013, REHABIL RES PRACT, DOI 10.1155/2013/649561
  38. Shiwa Sílvia Regina, 2011, Fisioter. mov., V24, P523, DOI 10.1590/S0103-51502011000300017
  39. Soares MD, 2015, REV NEUROCIENC, V23, P81
  40. Subramaniam S., 2015, INT J NEUROREHABILIT, V2, DOI 10.4172/2376-0281.1000185
  41. Veerbeek JM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087987
  42. Wang W, 2015, SCI REP-UK, V5, DOI 10.1038/srep08664
  43. Webster D, 2014, J NEUROENG REHABIL, V11, DOI 10.1186/1743-0003-11-108
  44. World Health Organization, 2006, WHO STEPS STROK MAN