alpha Klotho attenuates cardiac hypertrophy and increases myocardial fibroblast growth factor 21 expression in uremic rats

Carregando...
Imagem de Miniatura
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS LTD
Autores
SUASSUNA, Paulo Giovani de Albuquerque
CHEREM, Paula Marocolo
CASTRO, Barbara Bruna de
MAQUIGUSSA, Edgar
CENEDEZE, Marco Antonio
LOVISI, Julio Cesar Moraes
SANDERS-PINHEIRO, Helady
PAULA, Rogerio Baumgratz de
Citação
EXPERIMENTAL BIOLOGY AND MEDICINE, v.245, n.1, p.66-78, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In chronic kidney disease (CKD), evidence suggests that soluble alpha Klotho (sKlotho) has cardioprotective effects. Contrariwise, high circulating levels of fibroblast growth factor 23 (FGF23) are related to uremic cardiomyopathy development. Recently, it has been demonstrated that sKlotho can act as a soluble FGF23 co-receptor, allowing sKlotho to modulate FGF23 actions in the myocardium, leading to the activation of cardioprotective pathways. Fibroblast growth factor 21 (FGF21) is a cardiomyokine with sKlotho-like protective actions and has never been evaluated in uremic cardiomyopathy. Here, we aimed to evaluate whether recombinant alpha Klotho (rKlotho) replacement can attenuate cardiac remodeling in an established uremic cardiomyopathy, and to explore its impact on myocardial FGF21 expression. Forty-six male Wistar rats were divided into three groups: control, CKD-untreated, and CKD treated with rKlotho (CKD + KL). CKD was induced by 5/6 nephrectomy. From weeks 4-8, the control and CKD-untreated groups received vehicle, whereas the CKD + KL group received subcutaneous rKlotho replacement (0.01 mg/kg) every 48 h. Myocardial remodeling was evaluated by heart weight/tibia length (HW/TL) ratio, echocardiographic parameters, myocardial histomorphometry, and myocardial expression of beta-myosin heavy chain (MHC beta), alpha smooth muscle actin (alpha SMA), transient receptor potential cation channel 6 (TRPC6), and FGF21. As expected, CKD animals had reduced levels of sKlotho and increased serum FGF23 levels. Compared to the control group, manifest myocardial remodeling was present in the CKD-untreated group, while it was attenuated in the CKD + KL group. Furthermore, cardiomyocyte diameter and interstitial fibrotic area were reduced in the CKD + KL group compared to the CKD-untreated group. Similarly, rKlotho replacement was associated with reduced myocardial expression of TRPC6, MHC beta, and alpha SMA and a higher expression of FGF21. rKlotho showed cardioprotective effects by attenuating myocardial remodeling and reducing TRPC6 expression. Interestingly, rKlotho replacement was also associated with increased myocardial FGF21 expression, suggesting that an interaction between the two cardioprotective pathways needs to be further explored. Impact statement This study aimed to evaluate whether rKlotho replacement can attenuate cardiac remodeling in a post-disease onset therapeutic reasoning and explore the impact on myocardial FGF21 expression. This study contributes significantly to the literature, as the therapeutic effects of rKlotho replacement and FGF21 myocardial expression have not been widely evaluated in a setting of uremic cardiomyopathy. For the first time, it has been demonstrated that subcutaneous rKlotho replacement may attenuate cardiac remodeling in established uremic cardiomyopathy and increase myocardial expression of FGF21, suggesting a correlation between alpha Klotho and myocardial FGF21 expression. The possibility of interaction between the alpha Klotho and FGF21 cardioprotective pathways needs to be further explored, but, if confirmed, would point to a therapeutic potential of FGF21 in uremic cardiomyopathy.
Palavras-chave
Chronic kidney disease, uremic cardiomyopathy, Klotho, FGF23, FGF21
Referências
  1. Adams AC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049977
  2. Alhaj Eyad, 2013, Congest Heart Fail, V19, pE40, DOI 10.1111/chf.12030
  3. Alpert MA, 2011, HEMODIAL INT, V15, pS22, DOI 10.1111/j.1542-4758.2011.00598.x
  4. de Oliveira PWB, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00039
  5. Barker SL, 2015, NEPHROL DIAL TRANSPL, V30, P223, DOI 10.1093/ndt/gfu291
  6. Benedetta R, 2014, FREE RADICAL BIO MED, V75, pS14, DOI 10.1016/j.freeradbiomed.2014.10.588
  7. Buendia P, 2016, VITAM HORM, V101, P119, DOI 10.1016/bs.vh.2016.02.005
  8. Bush EW, 2006, J BIOL CHEM, V281, P33487, DOI 10.1074/jbc.M605536200
  9. Chen GZ, 2018, NATURE, V553, P461, DOI 10.1038/nature25451
  10. Custodio MR, 2012, NEPHROL DIAL TRANSPL, V27, P1437, DOI 10.1093/ndt/gfr447
  11. Dalton G, 2017, P NATL ACAD SCI USA, V114, P752, DOI 10.1073/pnas.1620301114
  12. Suassuna PGD, 2018, FRONT MED-LAUSANNE, V5, DOI 10.3389/fmed.2018.00206
  13. Desai BN, 2017, MOL METAB, V6, P1395, DOI 10.1016/j.molmet.2017.08.004
  14. Doi S, 2011, J BIOL CHEM, V286, P8655, DOI 10.1074/jbc.M110.174037
  15. Eder P, 2011, CIRC RES, V108, P265, DOI 10.1161/CIRCRESAHA.110.225888
  16. Ellison GM, 2012, HEART, V98, P5, DOI 10.1136/heartjnl-2011-300639
  17. Faul C, 2011, J CLIN INVEST, V121, P4393, DOI 10.1172/JCI46122
  18. Feingold KR, 2012, ENDOCRINOLOGY, V153, P2689, DOI 10.1210/en.2011-1496
  19. Go AS, 2016, SEMIN NEPHROL, V36, P293, DOI 10.1016/j.semnephrol.2016.05.006
  20. Helps SC, 2012, APPL IMMUNOHISTO M M, V20, P82, DOI 10.1097/PAI.0b013e31821fc8cd
  21. Hu MC, 2016, J AM SOC NEPHROL, V27, P79, DOI 10.1681/ASN.2014101030
  22. Hu MC, 2015, J AM SOC NEPHROL, V26, P1290, DOI 10.1681/ASN.2014050465
  23. Hu MC, 2013, ANNU REV PHYSIOL, V75, P503, DOI 10.1146/annurev-physiol-030212-183727
  24. Hui HP, 2017, ONCOTARGET, V8, P15663, DOI 10.18632/oncotarget.14933
  25. Joki Y, 2015, BIOCHEM BIOPH RES CO, V459, P124, DOI 10.1016/j.bbrc.2015.02.081
  26. Kharitonenkov A, 2005, J CLIN INVEST, V115, P1627, DOI 10.1172/JCI23606
  27. Kim KH, 2014, DIABETES METAB J, V38, P245, DOI 10.4093/dmj.2014.38.4.245
  28. Kuro-o M, 2013, NAT REV NEPHROL, V9, P650, DOI 10.1038/nrneph.2013.111
  29. Kuroo M, 1997, NATURE, V390, P45, DOI 10.1038/36285
  30. Li JY, 2012, AM J CARDIOVASC DIS, V2, P192
  31. Liang PP, 2017, INT J MOL MED, V40, P1477, DOI 10.3892/ijmm.2017.3140
  32. Lin ZF, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018398
  33. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  34. Luo YD, 2017, CYTOKINE GROWTH F R, V38, P59, DOI 10.1016/j.cytogfr.2017.08.001
  35. Maekawa Y, 2011, GERIATR GERONTOL INT, V11, P510, DOI 10.1111/j.1447-0594.2011.00699.x
  36. Maquigussa E, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01033
  37. McDonald TA, 2010, CURR OPIN MOL THER, V12, P461
  38. Mytych J, 2019, APOPTOSIS, V24, P95, DOI 10.1007/s10495-018-1496-1
  39. NIKAKHTAR B, 1978, ANGIOLOGY, V29, P758, DOI 10.1177/000331977802901006
  40. ORMROD D, 1980, NEPHRON, V26, P249, DOI 10.1159/000181994
  41. Otani-Takei N, 2015, INT J ENDOCRINOL, DOI 10.1155/2015/406269
  42. PARFREY PS, 1990, NEPHRON, V55, P114, DOI 10.1159/000185937
  43. Parfrey PS, 1996, NEPHROL DIAL TRANSPL, V11, P1277
  44. Planavila A, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3019
  45. Planavila A, 2015, CARDIOVASC RES, V106, P19, DOI 10.1093/cvr/cvu263
  46. Ravikumar P, 2014, AM J PHYSIOL-LUNG C, V307, pL566, DOI 10.1152/ajplung.00306.2013
  47. Redondo-Angulo I, 2017, CARDIOVASC RES, V113, P1574, DOI 10.1093/cvr/cvx088
  48. Richter B, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00189
  49. ROBINSON LA, 1984, ANN THORAC SURG, V38, P268, DOI 10.1016/S0003-4975(10)62250-3
  50. Romero-Calvo I, 2010, ANAL BIOCHEM, V401, P318, DOI 10.1016/j.ab.2010.02.036
  51. Salminen A, 2017, CELL SIGNAL, V40, P10, DOI 10.1016/j.cellsig.2017.08.009
  52. Shimizu I, 2016, J MOL CELL CARDIOL, V97, P245, DOI 10.1016/j.yjmcc.2016.06.001
  53. Song S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0082968
  54. Stein S, 2009, DIABETES CARE, V32, P126, DOI 10.2337/dc08-1054
  55. Suomalainen Anu, 2013, Expert Opin Med Diagn, V7, P313, DOI 10.1517/17530059.2013.812070
  56. Wang SD, 2017, CELL DEATH DIS, V8, DOI 10.1038/cddis.2017.410
  57. Wang XL, 2019, NAT REV NEPHROL, V15, P159, DOI 10.1038/s41581-018-0101-8
  58. Wu X, 2010, P NATL ACAD SCI USA, V107, P7000, DOI 10.1073/pnas.1001825107
  59. Xie J, 2016, VITAM HORM, V101, P311, DOI 10.1016/bs.vh.2016.02.010
  60. Xie J, 2015, J AM SOC NEPHROL, V26, P1150, DOI 10.1681/ASN.2014040325
  61. Xie J, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms2240
  62. Xu J, 2009, DIABETES, V58, P250, DOI 10.2337/db08-0392
  63. Yamamoto M, 2005, J BIOL CHEM, V280, P38029, DOI 10.1074/jbc.M509039200
  64. Yang K, 2015, J AM SOC NEPHROL, V26, P2434, DOI 10.1681/ASN.2014060543
  65. Yu LZ, 2016, BIOCHEM BIOPH RES CO, V473, P455, DOI 10.1016/j.bbrc.2016.03.029