B Lymphocytes and Macrophages in the Perivascular Adipose Tissue Are Associated With Coronary Atherosclerosis: An Autopsy Study

Carregando...
Imagem de Miniatura
Citações na Scopus
31
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Citação
JOURNAL OF THE AMERICAN HEART ASSOCIATION, v.8, n.24, article ID e013793, 21p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Macrophages and T lymphocytes in the perivascular adipose tissue (PvAT) were previously linked to coronary artery disease. However, the role of these cells and B lymphocytes in the human PvAT adjacent to unstable atherosclerotic plaques has not been investigated. Moreover, previous studies were inconclusive on whether PvAT inflammation was restricted to the surroundings of the atheroma plaque. Methods and Results Coronary arteries were freshly dissected with the surrounding PvAT. Atherosclerotic plaques were classified according to the internationally accepted anatomopathological criteria. Immune cells in the PvAT were detected using immunohistochemistry and then quantified. We used linear and logistic regressions with robust standard errors, adjusted for possible confounding factors. In 246 atherosclerotic plaques (205 stable and 41 unstable plaques) from 82 participants (mean age=69.0 +/- 14.4 years; 50% men), the percentage of arterial obstruction was positively correlated with the densities of CD68(+) macrophages (P=0.003) and CD20(+) B lymphocytes (P=0.03) in the periplaque PvAT. The number of cells was greater in the periplaque PvAT than in the distal PvAT (macrophages, P<0.001; B lymphocytes, P=0.04). In addition, the density of macrophages in the periplaque PvAT was greater in the presence of unstable plaques (P=0.03) and was also greater near unstable plaques than in the distal PvAT (P=0.001). CD3(+) T lymphocytes were not associated with percentage of obstruction and stable/unstable plaque composition. Conclusions The density of CD20(+) B lymphocytes and CD68(+) macrophages in periplaque PvAT was increased with plaque size, and the CD68(+) macrophages were greater near unstable atherosclerotic plaques than near stable lesions. This inflammation was more intense in the periplaque PvAT than in the PvAT distal to the atherosclerotic plaques.
Palavras-chave
atherosclerosis, B cell, coronary artery disease, inflammation, macrophages, pericoronary adipose tissue
Referências
  1. Ait-Oufella H, 2010, J EXP MED, V207, P1579, DOI 10.1084/jem.20100155
  2. [Anonymous], 2016, CLIN DIABETOL SA, V5, pA20
  3. [Anonymous], 2018, LANCET, V392, P1736, DOI 10.1016/S0140-6736(18)32203-7
  4. Bailey-Downs LC, 2013, J GERONTOL A-BIOL, V68, P780, DOI 10.1093/gerona/gls238
  5. Benjamin EJ, 2019, CIRCULATION, V139, pE56, DOI 10.1161/CIR.0000000000000659
  6. Blomkalns AL, 2010, AM J PHYSIOL-HEART C, V298, pH734, DOI 10.1152/ajpheart.00058.2010
  7. Brown NK, 2014, ARTERIOSCL THROM VAS, V34, P1621, DOI 10.1161/ATVBAHA.114.303029
  8. Chaplin DD, 2010, J ALLERGY CLIN IMMUN, V125, pS3, DOI 10.1016/j.jaci.2009.12.980
  9. Chatterjee TK, 2009, CIRC RES, V104, P541, DOI 10.1161/CIRCRESAHA.108.182998
  10. Chistiakov DA, 2016, IMMUNOBIOLOGY, V221, P1014, DOI 10.1016/j.imbio.2016.05.010
  11. Donath MY, 2011, NAT REV IMMUNOL, V11, P98, DOI 10.1038/nri2925
  12. Dybdahl B, 2002, CIRCULATION, V105, P685, DOI 10.1161/hc0602.103617
  13. Farfel JM, 2013, NEUROLOGY, V81, P650, DOI 10.1212/WNL.0b013e3182a08f1b
  14. Fernandez-Alfonso MS, 2017, BRIT J PHARMACOL, V174, P3561, DOI 10.1111/bph.13734
  15. Ferretti Renata Eloah de Lucena, 2010, Dement. neuropsychol., V4, P138, DOI 10.1590/S1980-57642010DN40200011
  16. Franceschi C, 2007, MECH AGEING DEV, V128, P92, DOI 10.1016/j.mad.2006.11.016
  17. Gaborit B, 2015, CARDIOVASC RES, V108, P62, DOI 10.1093/cvr/cvv208
  18. Gomez-Nicola D, 2015, ALZHEIMERS RES THER, V7, DOI 10.1186/s13195-015-0126-1
  19. Gu H, 2017, J CARDIOVASC COMPUT, V11, P367, DOI 10.1016/j.jcct.2017.07.002
  20. Hassan M, 2012, NAT REV CARDIOL, V9, P689, DOI 10.1038/nrcardio.2012.148
  21. Herrington W, 2016, CIRC RES, V118, P535, DOI 10.1161/CIRCRESAHA.115.307611
  22. Hirata Y, 2011, J AM COLL CARDIOL, V58, P248, DOI 10.1016/j.jacc.2011.01.048
  23. Hirata Y, 2011, INT HEART J, V52, P139, DOI 10.1536/ihj.52.139
  24. Hojbjerre L, 2011, DIABETES CARE, V34, P2265, DOI 10.2337/dc11-0631
  25. Horimatsu T, 2018, CARDIOVASC DRUG THER, V32, P503, DOI 10.1007/s10557-018-6821-y
  26. HUBERT HB, 1983, CIRCULATION, V67, P968, DOI 10.1161/01.CIR.67.5.968
  27. Ketelhuth DFJ, 2016, CIRC RES, V118, P668, DOI 10.1161/CIRCRESAHA.115.306427
  28. Konishi M, 2010, ATHEROSCLEROSIS, V213, P649, DOI 10.1016/j.atherosclerosis.2010.10.007
  29. Kosyreva AM, 2018, J INFLAMM RES, V11, P431, DOI 10.2147/JIR.S178288
  30. Kyaw T, 2010, J IMMUNOL, V185, P4410, DOI 10.4049/jimmunol.1000033
  31. Lesna IK, 2015, PHYSIOL RES, V64, pS435
  32. Libby P, 2015, CIRC RES, V116, P307, DOI 10.1161/CIRCRESAHA.116.301313
  33. Libby P, 2011, NATURE, V473, P317, DOI 10.1038/nature10146
  34. Lucas S., 2007, CURR DIAGN PATHOL, V13, P375, DOI 10.1016/J.CDIP.2007.06.001
  35. Mazurek T, 2003, CIRCULATION, V108, P2460, DOI 10.1161/01.CIR.0000099542.57313.C5
  36. Mazurek T, 2017, J NUCL CARDIOL, V24, P1075, DOI 10.1007/s12350-015-0370-6
  37. Mazurek T, 2014, KARDIOL POL, V72, P410, DOI 10.5603/KP.a2013.0320
  38. Najjar SS, 2005, HYPERTENSION, V46, P454, DOI 10.1161/01.HYP.0000177474.06749.98
  39. Ohman MK, 2011, ATHEROSCLEROSIS, V219, P33, DOI 10.1016/j.atherosclerosis.2011.07.012
  40. Rehg JE, 2012, TOXICOL PATHOL, V40, P345, DOI 10.1177/0192623311430695
  41. Ridker PM, 2017, NEW ENGL J MED, V377, P1119, DOI 10.1056/NEJMoa1707914
  42. Ridker PM, 2008, NEW ENGL J MED, V359, P2195, DOI 10.1056/NEJMoa0807646
  43. Ruan CC, 2017, FASEB J, V31, P1120, DOI 10.1096/fj.201600780R
  44. SALONEN JT, 1992, LANCET, V339, P883, DOI 10.1016/0140-6736(92)90926-T
  45. Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089
  46. Singh P, 2017, HYPERTENSION, V70, P839, DOI 10.1161/HYPERTENSIONAHA.117.09401
  47. Skiba DS, 2017, BRIT J PHARMACOL, V174, P4055, DOI 10.1111/bph.13685
  48. Stary HC, 2000, ARTERIOSCL THROM VAS, V20, P1177, DOI 10.1161/01.ATV.20.5.1177
  49. STARY HC, 1995, ARTERIOSCL THROM VAS, V15, P1512, DOI 10.1161/01.ATV.15.9.1512
  50. Stoger JL, 2012, ATHEROSCLEROSIS, V225, P461, DOI 10.1016/j.atherosclerosis.2012.09.013
  51. Suemoto CK, 2017, PLOS MED, V14, DOI 10.1371/journal.pmed.1002267
  52. Suemoto CK, 2011, STROKE, V42, P3614, DOI 10.1161/STROKEAHA.111.628156
  53. Suleiman MS, 2008, BRIT J PHARMACOL, V153, P21, DOI 10.1038/sj.bjp.0707526
  54. Tavora F, 2010, CARDIOVASC PATHOL, V19, P336, DOI [10.1016/j.carpath.2010.06.001, 10.1016/j.carpath.2009.02.001, 10.1016/j.carpath.2008.12.013]
  55. Tay C, 2016, CARDIOVASC RES, V111, P385, DOI 10.1093/cvr/cvw186
  56. Tsiantoulas D, 2014, CIRC RES, V114, P1743, DOI 10.1161/CIRCRESAHA.113.301145
  57. Tsokos M, 2007, FORENSIC SCI INT, V165, P155, DOI 10.1016/j.forsciint.2006.05.015
  58. Uchida Y, 2016, THORAX S1, V69, P1
  59. UCLA: Institute for Digital Research & Education, REGR STAT OLS
  60. Verhagen SN, 2012, ATHEROSCLEROSIS, V225, P99, DOI 10.1016/j.atherosclerosis.2012.08.031
  61. Veseli BE, 2017, EUR J PHARMACOL, V816, P3, DOI 10.1016/j.ejphar.2017.05.010
  62. Wang JC, 2012, CIRC RES, V111, P245, DOI 10.1161/CIRCRESAHA.111.261388
  63. WILSON PWF, 1994, AM J HYPERTENS, V7, pS7, DOI 10.1093/ajh/7.7.7S
  64. Xia SJ, 2016, J IMMUNOL RES, DOI 10.1155/2016/8426874
  65. Zouggari Y, 2013, NAT MED, V19, P1273, DOI 10.1038/nm.3284