Health economic assessment of a shift to active transport

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
RODRIGUES, P. F.
ALVIM-FERRAZ, M. C. M.
MARTINS, F. G.
SA, T. H.
SOUSA, S. I. V.
Citação
ENVIRONMENTAL POLLUTION, v.258, article ID 113745, 10p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Active transportation (walking or cycling) as a substitute for car trips still represents a small percentage of all daily travels in many European cities. This study aimed to estimate the health and economic co-benefits for the adult population of modal shift from driving to active travel in urban environments. Three scenarios were modelled for the case study, the city of Porto, Portugal, by comparing travel patterns of 2013 to hypothetical scenarios of modal shifts from driving to active transport, namely: i) SC1 - conservative scenario, with a change of 5% from driving to cycling and 10% from driving to walking; ii) SC2 - moderate scenario, with a shift of 10% and 15%, respectively; and iii) SC3 - optimistic scenario, with a shift of 15% and 20%, respectively. The mortality risk reduction for five health outcomes (colon and breast cancers, diabetes, ischemic heart disease, cerebrovascular disease) was assessed, including an estimation of traffic injury and air pollution exposure risks. Results were presented in Disability-Adjusted Life Years (DALYs) avoided. Economic valuation for each scenario was performed using a Willingness-to-Pay approach for morbimortality and a Cost of Illness approach for 2013 hospitalizations and work absenteeism. Significant health benefits were found in all modelled scenarios, ranging from 1657 (16%) to 2881 (28%) DALYs avoided. Total costs averted ranged from (sic)3894 to (sic)6769 million through the scenarios. Cardio and cerebrovascular diseases mortality presented the largest benefit, accounting for about 3/4 of all avoidable DALYs in all scenarios. Reductions in CO2 and PM10 emissions were calculated, showing a decrease from 31.6 to 73.7 kt of CO2 and 7 to 16 t for PM10, respectively. A modal shift towards active transportation could lead to significant health and economic benefits, indicating that the evaluation of health impacts should be included in the analysis of active transport interventions.
Palavras-chave
Air pollution, Active travel, Health impact assessment, Disability-adjusted life years, Economic valuation
Referências
  1. Adams MD, 2016, ATMOS ENVIRON, V140, P52, DOI 10.1016/j.atmosenv.2016.05.055
  2. Ainsworth BE, 2000, MED SCI SPORT EXER, V32, pS498, DOI 10.1097/00005768-200009001-00009
  3. *APA, 2017, [No title captured]
  4. Baptista F, 2012, MED SCI SPORT EXER, V44, P466, DOI 10.1249/MSS.0b013e318230e441
  5. Bayeux T., 2012, COUT EC IMPACTS SANI
  6. Bickel P., 2005, 21951 EUR
  7. Boogaard H, 2009, ATMOS ENVIRON, V43, P4234, DOI 10.1016/j.atmosenv.2009.05.035
  8. Brown V, 2016, TRANSPORT POLICY, V45, P190, DOI 10.1016/j.tranpol.2015.10.003
  9. Burnett RT, 2014, ENVIRON HEALTH PERSP, V122, P397, DOI 10.1289/ehp.1307049
  10. CCDR-N, 2015, INV EM POL ATM REG N
  11. Concawe, 2012, 21 CONCAWE REV EV VA
  12. de Hartog JJ, 2010, ENVIRON HEALTH PERSP, V118, P1109, DOI 10.1289/ehp.0901747
  13. de Nazelle A, 2008, EPIDEMIOLOGY, V19, pS130
  14. de Nazelle A, 2017, ENVIRON INT, V99, P151, DOI 10.1016/j.envint.2016.12.023
  15. de Nazelle A, 2012, ATMOS ENVIRON, V59, P151, DOI 10.1016/j.atmosenv.2012.05.013
  16. de Nazelle A, 2011, ENVIRON INT, V37, P766, DOI 10.1016/j.envint.2011.02.003
  17. de Sa TH, 2017, ENVIRON INT, V108, P22, DOI 10.1016/j.envint.2017.07.009
  18. de Sa Thiago Herick, 2015, Prev Med Rep, V2, P183, DOI 10.1016/j.pmedr.2015.02.011
  19. Deenihan G, 2014, J TRANSP HEALTH, V1, P141, DOI 10.1016/j.jth.2014.02.001
  20. Desaigues B, 2011, ECOL INDIC, V11, P902, DOI 10.1016/j.ecolind.2010.12.006
  21. Dhondt S, 2013, ENVIRON INT, V51, P45, DOI 10.1016/j.envint.2012.10.005
  22. ECF, 2017, CYCL DAT MAP
  23. Elvik R, 2009, ACCIDENT ANAL PREV, V41, P849, DOI 10.1016/j.aap.2009.04.009
  24. EPA, 2010, VAL MORT RISK RED EN
  25. ERS, 2014, PAR LIM AOS PREC QUE
  26. European Commission, 2018, TRAFF SAF BAS FACTS
  27. European Commission, 2018, TRAFF SAF BAS FACTS
  28. European Environment Agency (EEA), 2001, IND TRACK TRANSP ENV
  29. Genter J.A., 2008, 359 NZ TRANSPORT AGE
  30. Gerovasili V, 2015, PREV MED, V81, P87, DOI 10.1016/j.ypmed.2015.08.005
  31. Gotschi T, 2015, PREV MED, V74, P42, DOI 10.1016/j.ypmed.2015.02.009
  32. Grabow ML, 2012, ENVIRON HEALTH PERSP, V120, P68, DOI 10.1289/ehp.1103440
  33. Hales S., 2014, QUANTITATIVE RISK AS
  34. HEL, 2010, 17 HEI
  35. Holm AL, 2012, BMJ OPEN, V2, DOI 10.1136/bmjopen-2012-001135
  36. INE, 2017, OB N LOC RES NUTS 20
  37. INE, 2013, POP MED AN RES N LOC
  38. Istamto T, 2014, SCI TOTAL ENVIRON, V497, P420, DOI 10.1016/j.scitotenv.2014.07.110
  39. Jacobsen PL, 2015, INJURY PREV, V21, P271, DOI 10.1136/ip.9.3.205rep
  40. Jarrett J, 2012, LANCET, V379, P2198, DOI 10.1016/S0140-6736(12)60766-1
  41. Jo C, 2014, CLIN MOL HEPATOL, V20, P327, DOI 10.3350/cmh.2014.20.4.327
  42. Kahlmeier S., 2014, HLTH EC ASSESSMENT T
  43. Kaur S, 2007, ATMOS ENVIRON, V41, P4781, DOI 10.1016/j.atmosenv.2007.02.002
  44. Kaur S, 2005, ATMOS ENVIRON, V39, P7307, DOI 10.1016/j.atmosenv.2005.09.008
  45. Khreis H, 2017, J TRANSP HEALTH, V6, P209, DOI 10.1016/j.jth.2017.06.003
  46. Lima G., 2013, BURDEN DIS ATTRIBUTA
  47. Lipor, 2006, F UTURO SUSTENTAVEL
  48. Machado V., 2011, GLOBAL BURDEN DIS NO
  49. Macmillan A, 2014, ENVIRON HEALTH PERSP, V122, P335, DOI 10.1289/ehp.1307250
  50. MacNaughton P, 2014, SCI TOTAL ENVIRON, V490, P37, DOI 10.1016/j.scitotenv.2014.04.111
  51. Maizlish N, 2013, AM J PUBLIC HEALTH, V103, P703, DOI 10.2105/AJPH.2012.300939
  52. Miranda AI, 2016, SCI TOTAL ENVIRON, V569, P342, DOI 10.1016/j.scitotenv.2016.06.102
  53. Mueller N, 2015, PREV MED, V76, P103, DOI 10.1016/j.ypmed.2015.04.010
  54. Mulley C, 2013, RES TRANSP BUS MANAG, V7, P27, DOI 10.1016/j.rtbm.2013.01.001
  55. Murray CJL, 2012, LANCET, V380, P2197, DOI 10.1016/S0140-6736(12)61689-4
  56. Murray CJL, 1997, LANCET, V349, P1436, DOI 10.1016/S0140-6736(96)07495-8
  57. Ng CS, 2014, DIABETES RES CLIN PR, V105, P151, DOI 10.1016/j.diabres.2014.03.020
  58. Nicht L, 2015, COUT EC FINANCIER PO
  59. OECD, 2011, VAL MORT RISK RED RE
  60. OECD, 2014, COST AIR POLL
  61. Panis LI, 2010, ATMOS ENVIRON, V44, P2263, DOI 10.1016/j.atmosenv.2010.04.028
  62. Porto City Council, 2018, SUP BIOF AMB CLIM AM
  63. Porto City Council, 2014, EST RED CIRC CICL GR
  64. Pucher J, 2010, PREV MED, V50, pS106, DOI 10.1016/j.ypmed.2009.07.028
  65. Rabl A, 2012, TRANSPORT POLICY, V19, P121, DOI 10.1016/j.tranpol.2011.09.008
  66. Ready R, 2004, ENVIRON RESOUR ECON, V29, P67, DOI 10.1023/B:EARE.0000035441.37039.8a
  67. Ribeiro I, 2016, ATMOS ENVIRON, V125, P78, DOI 10.1016/j.atmosenv.2015.11.006
  68. Ribeiro P., 2012, EUR TRANSP C, P1
  69. Rojas-Rueda D, 2013, PREV MED, V57, P573, DOI 10.1016/j.ypmed.2013.07.021
  70. Rojas-Rueda D, 2012, ENVIRON INT, V49, P100, DOI 10.1016/j.envint.2012.08.009
  71. ROJASRUEDA D, 2011, [No title captured], V343, DOI 10.1136/BMJ.D4521
  72. Sa Thiago Herick, 2016, Prev Med Rep, V4, P540
  73. Saunders LE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0069912
  74. Slezakova K, 2009, SUSPENDED PARTICLES
  75. Stevenson M, 2016, LANCET, V388, P2925, DOI 10.1016/S0140-6736(16)30067-8
  76. Struijk EA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074294
  77. Tainio M, 2016, PREV MED, V87, P233, DOI 10.1016/j.ypmed.2016.02.002
  78. Wen CP, 2011, LANCET, V378, P1244, DOI 10.1016/S0140-6736(11)60749-6
  79. WHO, 2017, HLTH STAT INF SYST E
  80. WHO, 2017, NAT TOOLS HLTH STAT
  81. WHO, 2007, PHYS IN GLOB PUBL HL
  82. WHO, 2011, HLTH COB CLIM CHANG
  83. WHO Regional Office for Europe OECD, 2015, EC COST HLTH IMP AIR
  84. Woodcock J, 2014, BMJ-BRIT MED J, V348, DOI 10.1136/bmj.g425
  85. Woodcock J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0051462
  86. Woodcock J, 2011, INT J EPIDEMIOL, V40, P121, DOI 10.1093/ije/dyq104
  87. Woodcock J, 2009, LANCET, V374, P1930, DOI 10.1016/S0140-6736(09)61714-1
  88. Woodward A, 2016, PREV MED, V87, P237, DOI 10.1016/j.ypmed.2016.03.027
  89. Xia T, 2015, ENVIRON INT, V74, P281, DOI 10.1016/j.envint.2014.10.004
  90. Zhang K, 2013, SCI TOTAL ENVIRON, V450, P307, DOI 10.1016/j.scitotenv.2013.01.074