SELAdb: A database of exonic variants in a Brazilian population referred to a quaternary medical center in Sao Paulo

Carregando...
Imagem de Miniatura
Citações na Scopus
15
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
HOSPITAL CLINICAS, UNIV SAO PAULO
Citação
CLINICS, v.75, article ID e1913, 9p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
OBJECTIVES: High-throughput sequencing of genomes, exomes, and disease-focused gene panels is becoming increasingly common for molecular diagnostics. However, identifying a single clinically relevant pathogenic variant among thousands of genetic polymorphisms is a challenging task. Publicly available genomic databases are useful resources to filter out common genetic variants present in the population and enable the identification of each disease-causing variant. Based on our experience applying these technologies at Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo, Brazil, we recognized that the Brazilian population is not adequately represented in widely available genomic databases. METHODS: Here, we took advantage of our 5-year experience as a high-throughput sequencing core facility focused on individuals with putative genetic disorders to build a genomic database that may serve as a more accurate reference for our patient population: SELAdb. RESULTS/CONCLUSIONS: Currently, our database comprises a final cohort of 523 unrelated individuals, including patients or family members managed by different clinics of HCFMUSP. We compared SELAdb with other publicly available genomic databases and demonstrated that this population is very heterogeneous, largely resembling Latin American individuals of mixed origin, rather than individuals of pure European ancestry. Interestingly, exclusively through SELAdb, we identified a spectrum of known and potentially novel pathogenic variants in genes associated with highly penetrant Mendelian disorders, illustrating that pathogenic variants circulating in the Brazilian population that is treated in our clinics are underrepresented in other population databases. SELAdb is freely available for public consultation at: http://intranet.fm.usp.br/sela
Palavras-chave
Next Generation Sequencing, Database, Mendelian Disorders, Brazil, Population Genetics
Referências
  1. Altshuler DM, 2015, NATURE, V526, P68, DOI 10.1038/nature15393
  2. Andrews S., FASTQC QUALITY CONTR
  3. [Anonymous], HAIL 0 2 13 81AB564D
  4. Bushnell B., 2014, C 9 ANN GEN EN ENV M
  5. Chamberlin A, 2019, HUM MOL GENET, V28, P1620, DOI 10.1093/hmg/ddz002
  6. Cingolani P, 2012, FLY, V6, P80, DOI 10.4161/fly.19695
  7. Cingolani Pablo, 2012, Frontiers in Genetics, V3, P35, DOI 10.3389/fgene.2012.00035
  8. Correa FA, 2018, CLIN ENDOCRINOL, V88, P425, DOI 10.1111/cen.13535
  9. de Bruin C, 2016, HORM RES PAEDIAT, V86, P342, DOI 10.1159/000446476
  10. Franca MM, 2018, CLIN GENET, V93, P408, DOI 10.1111/cge.13156
  11. Franca MM, 2019, EUR J MED GENET, V62, P186, DOI 10.1016/j.ejmg.2018.07.008
  12. Franca MM, 2017, ENDOCRINE, V58, P442, DOI 10.1007/s12020-017-1459-2
  13. Franca MM, 2017, SEX DEV, V11, P137, DOI 10.1159/000477193
  14. Freire BL, 2018, EUR J MED GENET, V61, P130, DOI 10.1016/j.ejmg.2017.11.003
  15. Garrison E., 2012, HAPLOTYPE BASED VARI
  16. Garrison E., NTR
  17. Giolo SR, 2012, EUR J HUM GENET, V20, P111, DOI 10.1038/ejhg.2011.144
  18. Hisado-Oliva A, 2018, GENET MED, V20, P91, DOI 10.1038/gim.2017.66
  19. Kalia SS, 2017, GENET MED, V19, P249, DOI 10.1038/gim.2016.190
  20. Kehdy FSG, 2015, P NATL ACAD SCI USA, V112, P8696, DOI 10.1073/pnas.1504447112
  21. Landrum MJ, 2018, NUCLEIC ACIDS RES, V46, pD1062, DOI 10.1093/nar/gkx1153
  22. Lek M, 2016, NATURE, V536, P285, DOI 10.1038/nature19057
  23. Lessel D, 2018, BRAIN, V141, P2299, DOI 10.1093/brain/awy173
  24. Li H., 2013, ALIGNING SEQUENCE RE
  25. Li H, 2011, BIOINFORMATICS, V27, P2987, DOI 10.1093/bioinformatics/btr509
  26. Li Q, 2017, AM J HUM GENET, V100, P267, DOI 10.1016/j.ajhg.2017.01.004
  27. Naslavsky MS, 2017, HUM MUTAT, V38, P751, DOI 10.1002/humu.23220
  28. Okonechnikov K, 2016, BIOINFORMATICS, V32, P292, DOI 10.1093/bioinformatics/btv566
  29. Palmero EI, 2008, CANCER LETT, V261, P21, DOI 10.1016/j.canlet.2007.10.044
  30. Pedersen BS, 2020, GENOME MED, V12, DOI 10.1186/s13073-020-00761-2
  31. Pinto Emilia M., 2004, Arq Bras Endocrinol Metab, V48, P647, DOI 10.1590/S0004-27302004000500009
  32. Reich D, 2012, NATURE, V488, P370, DOI 10.1038/nature11258
  33. Ribeiro RC, 2001, P NATL ACAD SCI USA, V98, P9330, DOI 10.1073/pnas.161479898
  34. Shinjo SK, 2018, CLIN RHEUMATOL, V37, P1129, DOI 10.1007/s10067-017-3913-1
  35. Szpiech ZA, 2019, AM J HUM GENET, V105, P747, DOI 10.1016/j.ajhg.2019.08.011
  36. Tan A, 2015, BIOINFORMATICS, V31, P2202, DOI 10.1093/bioinformatics/btv112
  37. Tischler G, 2014, SOURCE CODE BIOL MED, V9, DOI 10.1186/1751-0473-9-13
  38. Vasques GA, 2017, J PEDIATR ENDOCR MET, V30, P111, DOI 10.1515/jpem-2016-0280
  39. Veloso MP, 2017, NEPHRON, V136, P158, DOI 10.1159/000458710
  40. Wickham H., 2016, GGPLOT2 ELEGANT GRAP