Air pollution impairs recovery and tissue remodeling in a murine model of acute lung injury

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE RESEARCH
Citação
SCIENTIFIC REPORTS, v.10, n.1, article ID 15314, 14p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Evidence regarding the impact of air pollution on acute respiratory distress syndrome (ARDS) is limited, and most studies focus on ARDS onset. Our study aimed to evaluate whether exposure to fine particulate matter interferes with lung recovery and remodeling in a murine model of acute lung injury. Forty-eight mice received nebulized LPS or the vehicle (controls). Blood, BALF, lungs and spleen were collected after 5 weeks of exposure to either PM2.5 (PM and LPS+PM group) or filtered air (control and LPS5w groups). Inflammatory cells and cytokines were assessed in the blood, BALF, lungs and spleen. Stereological analyses and remodeling assessments were performed by histology. The LPS+PM group showed increased BALF leukocytes, characterized by increased macrophages, increased IL-1 beta and IL-6 levels, anemia and thrombocytopenia. Moreover, we also observed septal thickening, decreased alveolar air space total volume and, septa surface density. Finally, regarding tissue remodeling, we observed elastosis of the lung parenchyma, and unlike in the LPS5w group, we did not observe fibrosis in the LPS+PM group. In conclusion, the delayed inflammation resolution due to subchronic exposure to PM2.5 could be influenced by low systemic and local lymphocyte counts, which lead to impaired lung injury recovery and tissue remodeling.
Palavras-chave
Referências
  1. AIMES RT, 1995, J BIOL CHEM, V270, P5872, DOI 10.1074/jbc.270.11.5872
  2. Anderson JO, 2012, J MED TOXICOL, V8, P166, DOI 10.1007/s13181-011-0203-1
  3. Andrade MD, 2012, AIR QUAL ATMOS HLTH, V5, P79, DOI 10.1007/s11869-010-0104-5
  4. Artigas A, 1998, AM J RESP CRIT CARE, V157, P1332, DOI 10.1164/ajrccm.157.4.ats2-98
  5. Becker S, 2003, EXP LUNG RES, V29, P29, DOI 10.1080/01902140303762
  6. Becker S, 2002, AM J RESP CELL MOL, V27, P611, DOI 10.1165/rcmb.4868
  7. Brook RD, 2004, CIRCULATION, V109, P2655, DOI 10.1161/01.CIR.0000128587.30041.C8
  8. Burnham EL, 2014, EUR RESPIR J, V43, P276, DOI 10.1183/09031936.00196412
  9. CETESB, 2017, QUALIDADE AR ESTADO
  10. D'Alessio FR, 2009, J CLIN INVEST, V119, P2898, DOI 10.1172/JCI36498
  11. Dancer RCA, 2011, EUR RESPIR J, V38, P1461, DOI 10.1183/09031936.00024711
  12. de Miranda RM, 2012, AIR QUAL ATMOS HLTH, V5, P63, DOI 10.1007/s11869-010-0124-1
  13. Duru Nadire, 2016, World J Biol Chem, V7, P231
  14. Fadok VA, 1998, J CLIN INVEST, V101, P890, DOI 10.1172/JCI1112
  15. Fernandez Isis E, 2012, Proc Am Thorac Soc, V9, P111, DOI 10.1513/pats.201203-023AW
  16. FRIEDRICH MJ, 2019, JAMA-J AM MED ASSOC, V321, P1041, DOI 10.1001/JAMA.2019.1934
  17. Hamon A, 2019, ANN INTENSIVE CARE, V9, DOI 10.1186/s13613-019-0516-9
  18. Honda T, 2017, ENVIRON INT, V101, P125, DOI 10.1016/j.envint.2017.01.017
  19. Hsia CCW, 2010, AM J RESP CRIT CARE, V181, P394, DOI 10.1164/rccm.200809-1522ST
  20. Huang XF, 2018, MEDIAT INFLAMM, V2018, DOI 10.1155/2018/1264913
  21. Inoue H, 2009, EXP TOXICOL PATHOL, V61, P51, DOI 10.1016/j.etp.2007.10.001
  22. Inoue KI, 2007, TOXICOLOGY, V238, P99, DOI 10.1016/j.tox.2007.05.022
  23. Inoue KI, 2006, ENVIRON HEALTH PERSP, V114, P1325, DOI 10.1289/ehp.8903
  24. Li Tao, 2018, Chronic Dis Transl Med, V4, P176, DOI 10.1016/j.cdtm.2018.07.002
  25. Lin HL, 2018, J EXPO SCI ENV EPID, V28, P392, DOI 10.1038/s41370-018-0034-0
  26. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  27. Marshall R, 1998, THORAX, V53, P815, DOI 10.1136/thx.53.10.815
  28. Lopes TDM, 2018, ENVIRON POLLUT, V241, P511, DOI 10.1016/j.envpol.2018.05.055
  29. Meyerholz DK, 2018, VET PATHOL, V55, P42, DOI 10.1177/0300985817726117
  30. Miyata R, 2011, TOXICOL APPL PHARM, V257, P209, DOI 10.1016/j.taap.2011.09.007
  31. Nikolic M, 2008, POL J ENVIRON STUD, V17, P267
  32. Nomura F, 2000, J IMMUNOL, V164, P3476, DOI 10.4049/jimmunol.164.7.3476
  33. Ortega-Gomez A, 2013, EMBO MOL MED, V5, P661, DOI 10.1002/emmm.201202382
  34. Reilly JP, 2019, AM J RESP CRIT CARE, V199, P62, DOI 10.1164/rccm.201803-0435OC
  35. Renwick LC, 2004, OCCUP ENVIRON MED, V61, P442, DOI 10.1136/oem.2003.008227
  36. Roberts ES, 2003, INHAL TOXICOL, V15, P1327, DOI 10.1080/08958370390241795
  37. Shoenfelt J, 2009, J LEUKOCYTE BIOL, V86, P303, DOI 10.1189/jlb.1008587
  38. Simao RR, 2016, ACTA CIR BRAS, V31, P278, DOI 10.1590/S0102-865020160040000009
  39. SIOUTAS C, 1995, ENVIRON HEALTH PERSP, V103, P172, DOI 10.2307/3432274
  40. Takano H, 2002, AM J RESP CRIT CARE, V165, P1329, DOI 10.1164/rccm.2108122
  41. Thille AW, 2013, LANCET RESP MED, V1, P395, DOI 10.1016/S2213-2600(13)70053-5
  42. Weibel ER, 1979, STEREOLOGICAL METHOD, P415
  43. Williams MA, 2007, BIOMARK INSIGHTS, V2, P226
  44. World Health Organization Occupational and Environmental Health Team, 2006, WHO AIR QUALITY GUID
  45. Costa NDX, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0185474
  46. Xing YF, 2016, J THORAC DIS, V8, pE69, DOI 10.3978/j.issn.2072-1439.2016.01.19
  47. Yanagisawa R, 2004, EXP BIOL MED, V229, P1081
  48. Yanagisawa R, 2003, THORAX, V58, P605, DOI 10.1136/thorax.58.7.605
  49. Akinaga LMY, 2009, TOXICOL PATHOL, V37, P306, DOI 10.1177/0192623309332994
  50. Yoshizaki K, 2016, ENVIRON POLLUT, V213, P359, DOI 10.1016/j.envpol.2016.02.044