The Blockade of TACE-Dependent EGF Receptor Activation by Losartan-Erlotinib Combination Attenuates Renal Fibrosis Formation in 5/6-Nephrectomized Rats Under Vitamin D Deficiency

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN MEDICINE, v.7, article ID 609158, 15p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Chronic kidney disease (CKD) has been considered a major public health issue. In addition to cardiovascular diseases and infections, hypovitaminosis D has been considered a non-traditional aggravating factor for CKD progression. Interstitial fibrosis is a hallmark of CKD strongly correlated with deterioration of renal function. Transforming growth factor beta (TGF-beta) is the major regulatory profibrotic cytokine in CKD. Many injurious stimuli converge on the TGF-beta pathway, which has context-dependent pleiotropic effects and interacts with several related renal fibrosis formation (RFF) pathways. Epidermal growth factor receptor (EGFR) is critically involved in CKD progression, exerting a pathogenic role in RFF associated with TGF-beta-related fibrogenesis. Among others, EGFR pathway can be activated by a disintegrin and a metalloproteinase known as tumor necrosis factor alpha-converting enzyme (TACE). Currently no effective therapy is available to completely arrest RFF and slow the progression of CKD. Therefore, we investigated the effects of a double treatment with losartan potassium (L), an AT1R antagonist, and the tyrosine kinase inhibitor erlotinib (E) on the alternative pathway of RFF related to TACE-dependent EGFR activation in 5/6-nephrectomized rats under vitamin D deficiency (D). During the 90-day protocol, male Wistar rats under D, were submitted to 5/6 nephrectomy (N) on day 30 and randomized into four groups: N+D, no treatment; N+D+L, received losartan (50 mg/kg/day); N+D+E, received erlotinib (6 mg/kg/day); N+D+L+E received losartan+erlotinib treatment. N+D+L+E data demonstrated that the double treatment with losartan+erlotinib not only blocked the TACE-dependent EGF receptor activation but also prevented the expression of TGF-beta, protecting against RFF. This renoprotection by losartan+erlotinib was corroborated by a lower expression of ECM proteins and markers of phenotypic alteration as well as a lesser inflammatory cell infiltrate. Although erlotinib alone has been emerging as a renoprotective drug, its association with losartan should be considered as a potential therapeutic strategy on the modulation of RFF.
Palavras-chave
chronic kidney disease, TACE, renal fibrosis, vitamin D deficiency, erlotinib, experimental model, EGF receptor (EGFR), EGF (epidermal growth factor)
Referências
  1. AKAI Y, 1994, AM J PHYSIOL, V267, pC482
  2. Arcidiacono MV, 2008, J AM SOC NEPHROL, V19, P310, DOI 10.1681/ASN.2007040406
  3. Bonventre JV, 2013, J CLIN INVEST, V123, P4570, DOI 10.1172/JCI72748
  4. BRENNER BM, 1985, AM J PHYSIOL, V249, pF324
  5. Brenner BM, 2001, NEW ENGL J MED, V345, P861, DOI 10.1056/NEJMoa011161
  6. BURNETTE WN, 1981, ANAL BIOCHEM, V112, P195, DOI 10.1016/0003-2697(81)90281-5
  7. Campbell RC, 2002, J AM SOC NEPHROL, V13, pS190, DOI 10.1097/01.ASN.0000032522.29672.0A
  8. Canale D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103055
  9. Chen JC, 2012, MOL CELL BIOL, V32, P981, DOI 10.1128/MCB.06410-11
  10. Chen JC, 2012, J AM SOC NEPHROL, V23, P215, DOI 10.1681/ASN.2011070645
  11. de Braganca AC, 2016, PHYSIOL REP, V4, DOI 10.14814/phy2.12829
  12. de Braganca AC, 2018, FRONT MED-LAUSANNE, V5, DOI 10.3389/fmed.2018.00282
  13. de Braganca AC, 2015, PHYSIOL REP, V3, DOI 10.14814/phy2.12331
  14. Dowell J, 2005, NAT REV DRUG DISCOV, V4, P13, DOI 10.1038/nrd1612
  15. Dusso A, 2011, BEST PRACT RES CL EN, V25, P647, DOI 10.1016/j.beem.2011.05.005
  16. Dusso AS, 2011, KIDNEY INT SUPPL, V1, P136, DOI 10.1038/kisup.2011.30
  17. Fang QL, 2016, ONCOTARGET, V7, P24361, DOI 10.18632/oncotarget.8222
  18. Ferreira D, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0007567
  19. Flamant M, 2002, FASEB J, V16, P327, DOI 10.1096/fj.02-0115fje
  20. FLOEGE J, 1992, KIDNEY INT, V41, P297, DOI 10.1038/ki.1992.42
  21. Fujihara CK, 2003, KIDNEY INT, V64, P2172, DOI 10.1046/j.1523-1755.2003.00319.x
  22. Fujihara CK, 2000, J AM SOC NEPHROL, V11, P283
  23. Genovese F, 2014, FIBROGENESIS TISSUE, V7, DOI 10.1186/1755-1536-7-4
  24. Goncalves ARR, 2004, AM J PHYSIOL-RENAL, V286, pF945, DOI 10.1152/ajprenal.00238.2003
  25. Goncalves JG, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0107228
  26. Guiteras R, 2016, CLIN KIDNEY J, V9, P765, DOI 10.1093/ckj/sfw096
  27. Gutierrez O, 2005, J AM SOC NEPHROL, V16, P2205, DOI 10.1681/ASN.2005010052
  28. Harskamp LR, 2016, NAT REV NEPHROL, V12, P496, DOI 10.1038/nrneph.2016.91
  29. Hu MC, 2013, ANNU REV PHYSIOL, V75, P503, DOI 10.1146/annurev-physiol-030212-183727
  30. Huen SC, 2017, ANNU REV PHYSIOL, V79, P449, DOI 10.1146/annurev-physiol-022516-034219
  31. Humphreys BD, 2018, ANNU REV PHYSIOL, V80, P309, DOI 10.1146/annurev-physiol-022516-034227
  32. Huynh P, 2019, CLIN SCI, V133, P287, DOI 10.1042/CS20180438
  33. Ibsen H, 2004, J HYPERTENS, V22, P1805, DOI 10.1097/00004872-200409000-00026
  34. IKOMA M, 1991, KIDNEY INT, V40, P195, DOI 10.1038/ki.1991.200
  35. Jha V, 2013, LANCET, V382, P260, DOI 10.1016/S0140-6736(13)60687-X
  36. Jha V, 2012, NEPHROL DIAL TRANSPL, V27, P32, DOI 10.1093/ndt/gfs113
  37. Khundmiri SJ, 2016, COMPR PHYSIOL, V6, P561, DOI 10.1002/cphy.c140071
  38. Laouari D, 2011, J AM SOC NEPHROL, V22, P327, DOI 10.1681/ASN.2010040356
  39. Lautrette A, 2005, NAT MED, V11, P867, DOI 10.1038/nm1275
  40. LEE LK, 1995, J CLIN INVEST, V96, P953, DOI 10.1172/JCI118143
  41. Legarth C, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19020455
  42. Liu N, 2012, J AM SOC NEPHROL, V23, P854, DOI 10.1681/ASN.2011050493
  43. Luchi WM, 2015, AM J PHYSIOL-REG I, V309, pR215, DOI 10.1152/ajpregu.00526.2014
  44. Meng XM, 2016, NAT REV NEPHROL, V12, P325, DOI 10.1038/nrneph.2016.48
  45. Noronha IL, 2002, NEPHROL DIAL TRANSPL, V17, P363, DOI 10.1093/ndt/17.3.363
  46. Patel TV, 2009, SEMIN NEPHROL, V29, P113, DOI 10.1016/j.semnephrol.2009.01.004
  47. Qian YY, 2016, J PHARMACOL EXP THER, V356, P32, DOI 10.1124/jpet.115.228080
  48. Rayego-Mateos S, 2013, J PATHOL, V231, P480, DOI 10.1002/path.4250
  49. Remuzzi Giuseppe, 2005, Kidney Int Suppl, pS57
  50. Romagnani P, 2017, NAT REV DIS PRIMERS, V3, DOI 10.1038/nrdp.2017.88
  51. Schwarz U, 1998, KIDNEY INT, V53, P1696, DOI 10.1046/j.1523-1755.1998.00951.x
  52. Seiler S, 2009, KIDNEY INT, V76, pS34, DOI 10.1038/ki.2009.405
  53. Shah BH, 2006, TRENDS PHARMACOL SCI, V27, P235, DOI 10.1016/j.tips.2006.03.010
  54. Sheng LL, 2016, EXP CELL RES, V346, P99, DOI 10.1016/j.yexcr.2016.06.009
  55. Tamez H, 2013, CURR OPIN NEPHROL HY, V22, P204, DOI 10.1097/MNH.0b013e32835d919b
  56. Tang JH, 2013, KIDNEY INT, V83, P804, DOI 10.1038/ki.2012.435
  57. Tarif N, 1997, KIDNEY INT, pS67
  58. Terzi F, 2000, J CLIN INVEST, V106, P225, DOI 10.1172/JCI8315
  59. Vanhove T, 2017, TRANSPLANTATION, V101, P713, DOI 10.1097/TP.0000000000001608
  60. Waldherr R, 1988, Contrib Nephrol, V60, P64
  61. Webster AC, 2017, LANCET, V389, P1238, DOI 10.1016/S0140-6736(16)32064-5
  62. Wolf G, 2006, KIDNEY INT, V70, P1914, DOI 10.1038/sj.ki.5001846
  63. WOLF G, 1993, J CLIN INVEST, V92, P1366, DOI 10.1172/JCI116710
  64. Yamamoto Y, 2018, NEPHROL DIAL TRANSPL, V33, P598, DOI 10.1093/ndt/gfx264
  65. Zand L, 2017, ENDOCRIN METAB CLIN, V46, P983, DOI 10.1016/j.ecl.2017.07.008
  66. Zeng FH, 2016, AM J PHYSIOL-RENAL, V311, pF695, DOI 10.1152/ajprenal.00377.2015
  67. Zhang Y, 2010, J AM SOC NEPHROL, V21, P966, DOI 10.1681/ASN.2009080872