Hippocampal CA3 transcriptional modules associated with granule cell alterations and cognitive impairment in refractory mesial temporal lobe epilepsy patients

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE RESEARCH
Citação
SCIENTIFIC REPORTS, v.11, n.1, article ID 10257, 16p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In about a third of the patients with epilepsy the seizures are not drug-controlled. The current limitation of the antiepileptic drug therapy derives from an insufficient understanding of epilepsy pathophysiology. In order to overcome this situation, it is necessary to consider epilepsy as a disturbed network of interactions, instead of just looking for changes in single molecular components. Here, we studied CA3 transcriptional signatures and dentate gyrus histopathologic alterations in hippocampal explants surgically obtained from 57 RMTLE patients submitted to corticoamygdalohippocampectomy. By adopting a systems biology approach, integrating clinical, histopathological, and transcriptomic data (weighted gene co-expression network analysis), we were able to identify transcriptional modules highly correlated with age of disease onset, cognitive dysfunctions, and granule cell alterations. The enrichment analysis of transcriptional modules and the functional characterization of the highly connected genes in each trait-correlated module allowed us to unveil the modules' main biological functions, paving the way for further investigations on their roles in RMTLE pathophysiology. Moreover, we found 15 genes with high gene significance values which have the potential to become novel biomarkers and/or therapeutic targets in RMTLE.
Palavras-chave
Referências
  1. Azevedo H, 2018, DIS MODEL MECH, V11, DOI 10.1242/dmm.029074
  2. Bando SY, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026268
  3. Bando SY, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079913
  4. Barabasi AL, 2011, NAT REV GENET, V12, P56, DOI 10.1038/nrg2918
  5. Bartholome O, 2017, FRONT MOL NEUROSCI, V10, DOI 10.3389/fnmol.2017.00148
  6. Baulac M, 2015, REV NEUROL-FRANCE, V171, P259, DOI 10.1016/j.neurol.2015.02.004
  7. Beghi E, 2020, NEUROEPIDEMIOLOGY, V54, P185, DOI 10.1159/000503831
  8. Bellesi M, 2015, BMC BIOL, V13, DOI 10.1186/s12915-015-0176-7
  9. Bertonha FB, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0227547
  10. Bhattacharya A, 2016, FRONT NEURAL CIRCUIT, V10, DOI 10.3389/fncir.2016.00045
  11. Bilevicius E, 2010, NEUROLOGY, V75, P1695, DOI 10.1212/WNL.0b013e3181fc29dd
  12. Blumcke I, 2007, ACTA NEUROPATHOL, V113, P235, DOI 10.1007/s00401-006-0187-0
  13. Blumcke I, 2013, EPILEPSIA, V54, P1315, DOI 10.1111/epi.12220
  14. Blumcke I, 2017, NEW ENGL J MED, V377, P1648, DOI 10.1056/NEJMoa1703784
  15. Canto AM, 2021, HIPPOCAMPUS, V31, P122, DOI 10.1002/hipo.23268
  16. Chang J, 2014, BIOCHEM BIOPH RES CO, V455, P290, DOI 10.1016/j.bbrc.2014.11.005
  17. Chen YH, 2017, BBA-MOL BASIS DIS, V1863, P1492, DOI 10.1016/j.bbadis.2017.04.018
  18. Chungath M, 2008, NAT CLIN PRACT NEURO, V4, P610, DOI 10.1038/ncpneuro0922
  19. Crespo M, 2021, CELL MOL NEUROBIOL, DOI 10.1007/s10571-021-01041-2
  20. do Canto AM, 2021, FRONT MOL NEUROSCI, V13, DOI 10.3389/fnmol.2020.604158
  21. Doucet G, 2013, HUM BRAIN MAPP, V34, P2202, DOI 10.1002/hbm.22059
  22. Doucet GE, 2015, BRAIN TOPOGR, V28, P113, DOI 10.1007/s10548-014-0366-6
  23. Dube CM, 2010, J NEUROSCI, V30, P7484, DOI 10.1523/JNEUROSCI.0551-10.2010
  24. Engel J, 2014, ANN INDIAN ACAD NEUR, V17, pS12, DOI 10.4103/0972-2327.128644
  25. Engel J, 2012, JAMA-J AM MED ASSOC, V307, P922, DOI 10.1001/jama.2012.220
  26. Fiermonte G, 2002, J BIOL CHEM, V277, P19289, DOI 10.1074/jbc.M201572200
  27. Frej AD, 2017, EUR J CELL BIOL, V96, P154, DOI 10.1016/j.ejcb.2017.01.007
  28. Gaiteri C, 2014, GENES BRAIN BEHAV, V13, P13, DOI 10.1111/gbb.12106
  29. Gasparini A, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05748-5
  30. Guelfi S, 2019, BRAIN, V142, P1616, DOI 10.1093/brain/awz074
  31. Haile Y, 2017, J NEUROINFLAMM, V14, DOI 10.1186/s12974-016-0788-z
  32. Hirota S, 2015, DEVELOPMENT, V142, P4363, DOI 10.1242/dev.113746
  33. Hodges SL, 2018, EPILEPSY RES, V146, P9, DOI 10.1016/j.eplepsyres.2018.07.002
  34. Huang C, 2015, NEUROCHEM RES, V40, P1319, DOI 10.1007/s11064-015-1614-1
  35. Iseki K, 2011, BIOMED RES-TOKYO, V32, P373, DOI 10.2220/biomedres.32.373
  36. Jakob B, 2017, P NATL ACAD SCI USA, V114, P5533, DOI 10.1073/pnas.1704447114
  37. Janz R, 1998, J NEUROSCI, V18, P9269
  38. Kaphzan H, 2012, BIOL PSYCHIAT, V72, P182, DOI 10.1016/j.biopsych.2012.01.021
  39. Kasperaviciute D, 2013, BRAIN, V136, P3140, DOI 10.1093/brain/awt233
  40. Kim JK, 2019, J CLIN INVEST, V129, P4207, DOI 10.1172/JCI127032
  41. Kimura I, 2010, J NEUROCHEM, V112, P1156, DOI 10.1111/j.1471-4159.2009.06522.x
  42. Ko YU, 2019, CELL DEATH DIS, V10, DOI 10.1038/s41419-019-1818-4
  43. Krook-Magnuson E, 2015, J PHYSIOL-LONDON, V593, P2379, DOI 10.1113/JP270056
  44. Kuleshov MV, 2016, NUCLEIC ACIDS RES, V44, pW90, DOI 10.1093/nar/gkw377
  45. Langfelder P., 2007, DYNAMIC TREE CUT IN
  46. Langfelder P, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-559
  47. Lee DY, 2015, EXP NEUROBIOL, V24, P177, DOI 10.5607/en.2015.24.3.177
  48. Lee Sang Kun, 2014, J Epilepsy Res, V4, P1
  49. Lee T, 2016, ONCOTARGET, V7, P42716, DOI 10.18632/oncotarget.8446
  50. Leong HS, 2009, NUCLEIC ACIDS RES, V37, DOI 10.1093/nar/gkp310
  51. Li XJ, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/1725191
  52. Li Y., ACTA EPILEPTOL, V2, P20, DOI [10.1186/s42494-020-00027-9, DOI 10.1186/S42494-020-00027-9]
  53. Lim DA, 2006, MOL CELL NEUROSCI, V31, P131, DOI 10.1016/j.mcn.2005.10.005
  54. Lin CY, 2019, TRANSL PSYCHIAT, V9, DOI 10.1038/s41398-019-0529-z
  55. Liu JYW, 2020, FRONT CELL NEUROSCI, V14, DOI 10.3389/fncel.2020.00053
  56. Lopez LM, 2012, EUR J HUM GENET, V20, P341, DOI 10.1038/ejhg.2011.201
  57. Lorenzo DN, 2014, J CELL BIOL, V207, P735, DOI 10.1083/jcb.201407063
  58. Luo YQ, 2002, J NEUROCHEM, V80, P354, DOI 10.1046/j.0022-3042.2001.00707.x
  59. Mahar I, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026610
  60. Malmgren K, 2012, EPILEPSIA, V53, P19, DOI 10.1111/j.1528-1167.2012.03610.x
  61. Marchi N, 2013, NEUROSCIENTIST, V19, P304, DOI 10.1177/1073858412462747
  62. Margineanu DG, 2014, EPILEPSY BEHAV, V38, P131, DOI 10.1016/j.yebeh.2013.08.029
  63. Mikkonen M, 1998, ANN NEUROL, V44, P923, DOI 10.1002/ana.410440611
  64. Moreira CA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128174
  65. Nakaya N, 2012, J BIOL CHEM, V287, P37171, DOI 10.1074/jbc.M112.389916
  66. Oyagi A, 2011, BRAIN RES, V1419, P97, DOI 10.1016/j.brainres.2011.09.003
  67. Pascente R, 2016, NEUROBIOL DIS, V93, P146, DOI 10.1016/j.nbd.2016.05.001
  68. Peixoto-Santos JE, 2015, EPILEPSIA, V56, P1562, DOI 10.1111/epi.13082
  69. Pimentel-Silva LR, 2020, EPILEPSIA, V61, P1008, DOI 10.1111/epi.16509
  70. Queenan BN, 2018, EPILEPSIA, V59, P106, DOI 10.1111/epi.13941
  71. R Core Team, 2018, R LANG ENV STAT COMP
  72. Raslan AA, 2019, INT J BIOCHEM CELL B, V106, P26, DOI 10.1016/j.biocel.2018.11.005
  73. Ritchie ME, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv007
  74. Ruzzo EK, 2013, NEURON, V80, P429, DOI 10.1016/j.neuron.2013.08.013
  75. Sanchez J, 2014, SEIZURE-EUR J EPILEP, V23, P448, DOI 10.1016/j.seizure.2014.03.003
  76. Scheffer IE, 2017, EPILEPSIA, V58, P512, DOI 10.1111/epi.13709
  77. Schroeder J, 2014, FRONT HUM NEUROSCI, V8, DOI 10.3389/fnhum.2014.00501
  78. Seki T, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-54684-z
  79. Sha LZ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039152
  80. Smyth GK, 2005, STAT BIOL HEALTH, P397, DOI 10.1007/0-387-29362-0_23
  81. Stevens HE, 2012, BIOL PSYCHIAT, V71, P1090, DOI 10.1016/j.biopsych.2012.03.013
  82. Tan J, 1996, AM J HUM GENET, V59, P810
  83. Tang H, 2018, P NATL ACAD SCI USA, V115, P9246, DOI 10.1073/pnas.1801810115
  84. van Dam S, 2018, BRIEF BIOINFORM, V19, P575, DOI 10.1093/bib/bbw139
  85. Vandenberg RJ, 2013, PHYSIOL REV, V93, P1621, DOI 10.1152/physrev.00007.2013
  86. Wang H, 2014, J ALZHEIMERS DIS, V39, P79, DOI 10.3233/JAD-130812
  87. Wang L, 2011, NEUROSCIENCE, V172, P427, DOI 10.1016/j.neuroscience.2010.10.035
  88. Winden KD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020763
  89. Xu F, 2018, J CELL BIOL, V217, P3480, DOI 10.1083/jcb.201801085
  90. Xu YL, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-13248-9
  91. Yang Y, 2012, BEHAV BRAIN RES, V229, P412, DOI 10.1016/j.bbr.2012.01.043
  92. Zhang LY, 2017, FRONT COMPUT NEUROSC, V11, DOI 10.3389/fncom.2017.00061
  93. Zhao LH, 2010, HUM MOL GENET, V19, P25, DOI 10.1093/hmg/ddp464
  94. Zhu JM, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00207-7
  95. Zhu XJ, 2017, FRONT CELL NEUROSCI, V11, DOI 10.3389/fncel.2017.00377