EDGE-PRESERVING SPECKLE TEXTURE REMOVAL BY INTERFERENCE-BASED SPECKLE FILTERING FOLLOWED BY ANISOTROPIC DIFFUSION

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
CARDOSO, Fernando M.
FURUIE, Sergio S.
Citação
ULTRASOUND IN MEDICINE AND BIOLOGY, v.38, n.8, p.1414-1428, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Ultrasonography has an inherent noise pattern, called speckle, which is known to hamper object recognition for both humans and computers. Speckle noise is produced by the mutual interference of a set of scattered wavefronts. Depending on the phase of the wavefronts, the interference may be constructive or destructive, which results in brighter or darker pixels, respectively. We propose a filter that minimizes noise fluctuation while simultaneously preserving local gray level information. It is based on steps to attenuate the destructive and constructive interference present in ultrasound images. This filter, called interference-based speckle filter followed by anisotropic diffusion (ISFAD), was developed to remove speckle texture from B-mode ultrasound images, while preserving the edges and the gray level of the region. The ISFAD performance was compared with 10 other filters. The evaluation was based on their application to images simulated by Field II (developed by Jensen et al.) and the proposed filter presented the greatest structural similarity, 0.95. Functional improvement of the segmentation task was also measured, comparing rates of true positive, false positive and accuracy. Using three different segmentation techniques, ISFAD also presented the best accuracy rate (greater than 90% for structures with well-defined borders). (E-mail: fernando.okara@gmail.com) (C) 2012 World Federation for Ultrasound in Medicine & Biology.
Palavras-chave
Ultrasonic imaging, Biomedical image processing, Image enhancement, Speckle filtering
Referências
  1. BURCKHARDT CB, 1978, IEEE T SON ULTRASON, V25, P1
  2. Cardoso FC, 2011, SPIE MED IMAGING ULT, V34, P7968
  3. Coupe P, 2009, IEEE T IMAGE PROCESS, V18, P2221, DOI 10.1109/TIP.2009.2024064
  4. Finn S, 2011, IEEE T ULTRASON FERR, V58, P82, DOI 10.1109/TUFFC.2011.1776
  5. Huang HC, 2003, ULTRASOUND MED BIOL, V29, P1161, DOI 10.1016/S0301-5629(03)00927-X
  6. HUTTENLOCHER DP, 1993, IEEE T PATTERN ANAL, V15, P850, DOI 10.1109/34.232073
  7. Insana MF, 2004, J MAMMARY GLAND BIOL, V9, P393, DOI 10.1007/s10911-004-1409-5
  8. Jensen J. A., 1996, MED BIOL ENG COMPUT, V34, P351
  9. Jensen JA, 2011, FIELD 2 SIMULATION P
  10. LEE JS, 1980, IEEE T PATTERN ANAL, V2, P165
  11. Li Chun-ming, 2005, IEEE C COMP VIS PATT, V1, P430
  12. Loizou C. P., 2008, DESPECKLE FILTERING
  13. Loizou CP, 2005, IEEE T ULTRASON FERR, V52, P1653, DOI 10.1109/TUFFC.2005.1561621
  14. LOUPAS T, 1989, IEEE T CIRCUITS SYST, V36, P129, DOI 10.1109/31.16577
  15. McDicken N, 1991, DIAGNOSTIC ULTRASOUN
  16. PERONA P, 1990, IEEE T PATTERN ANAL, V12, P629, DOI 10.1109/34.56205
  17. Tay PC, 2010, IEEE T IMAGE PROCESS, V19, P1847, DOI 10.1109/TIP.2010.2044962
  18. Tomasi C., 1998, P IEEE INT C COMP VI, P836
  19. Udupa JK, 1996, GRAPH MODEL IM PROC, V58, P246, DOI 10.1006/gmip.1996.0021
  20. Wang Z, 2004, IEEE T IMAGE PROCESS, V13, P600, DOI 10.1109/TIP.2003.819861
  21. Xu CY, 1998, IEEE T IMAGE PROCESS, V7, P359, DOI 10.1109/83.661186
  22. Yang Z, 2004, EURASIP J APPL SIG P, V2004, P2492, DOI 10.1155/S1110865704402091
  23. Yu YJ, 2002, IEEE T IMAGE PROCESS, V11, P1260, DOI [10.1109/TIP.2002.804276, 10.1109/TIP.2002.804279]