FULL-THICKNESS MACULAR HOLE SIZE BY HYPERTRANSMISSION SIGNAL ON SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
FERRARA, Daniela
MOULT, Eric M.
FUJIMOTO, James G.
ABU-QAMAR, Omar
DUKER, Jay S.
WAHEED, Nadia K.
Citação
RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, v.41, n.10, p.2059-2065, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose: To assess the full-thickness macular hole (FTMH) size using the choroidal hypertransmission signal on spectral-domain optical coherence tomography and to compare this method to the standard aperture measurement of the minimum aperture size at the level of the neurosensory retina. Design: Cross-sectional study of retrospective data. Methods: Eyes with FTMH imaged on spectral-domain optical coherence tomography were included. Two independent masked graders used the device's built-in caliper tool to measure the FTMH minimum aperture size at the level of the neurosensory retina and the size of the corresponding hypertransmission signal below the level of the retinal pigment epithelium/Bruch membrane complex. To assess the reproducibility of the hypertransmission measurement in tilted scans, two measurements were obtained and compared; the first was traced parallel to the retinal pigment epithelium (parallel hypertransmission), and the second was horizontal to the image frame (horizontal hypertransmission), both using Image J software. Results: A total of 31 eyes were enrolled. The mean FTMH minimum aperture size was smaller compared with both the choroidal parallel hypertransmission and horizontal hypertransmission measurements (mean +/- SD: 335.7 +/- 139.5 mu m, 376.7 +/- 150.6 mu m, 375.1 +/- 150.0 mu m, respectively. P < 0.001 for both comparisons). Conclusion: The proposed hypertransmission measurement is a feasible and reproducible alternative to assess FTMH size and could provide the basis for an automated FTMH measurement on cross-sectional spectral-domain optical coherence tomography scans, as presented in this study, or on the spectral-domain optical coherence tomography volumetric data set by using an en face projection.
Palavras-chave
choroidal hypertransmission, full-thickness macular hole, imaging, macular hole, optical coherence tomography, retina, retinal pigment epithelium, spectral-domain
Referências
  1. Adhi M, 2013, CURR OPIN OPHTHALMOL, V24, P213, DOI 10.1097/ICU.0b013e32835f8bf8
  2. Benson SE, 2008, EYE, V22, P87, DOI 10.1038/sj.eye.6702947
  3. Cole ED, 2016, INVEST OPHTH VIS SCI, V57, pOCT356, DOI 10.1167/iovs.15-18473
  4. Duker JS, 2013, OPHTHALMOLOGY, V120, P2611, DOI 10.1016/j.ophtha.2013.07.042
  5. Ezra E, 2004, ARCH OPHTHALMOL-CHIC, V122, P224, DOI 10.1001/archopht.122.2.224
  6. Fujimoto JG, 2000, NEOPLASIA, V2, P9, DOI 10.1038/sj.neo.7900071
  7. GASS JDM, 1990, AM J OPHTHALMOL, V109, P638, DOI 10.1016/S0002-9394(14)72431-6
  8. GASS JDM, 1995, AM J OPHTHALMOL, V119, P752, DOI 10.1016/S0002-9394(14)72781-3
  9. Gupta B, 2009, BRIT J OPHTHALMOL, V93, P1488, DOI 10.1136/bjo.2008.153189
  10. Haritoglou C, 2007, CLIN EXP OPHTHALMOL, V35, P208, DOI 10.1111/j.1442-9071.2006.01445.x
  11. Ip MS, 2002, ARCH OPHTHALMOL-CHIC, V120, P29
  12. Johnson MW, 2010, AM J OPHTHALMOL, V149, P371, DOI 10.1016/j.ajo.2009.11.022
  13. Knapp H., 1869, ARCH AUGENHEILKD, V1, P6
  14. Koizumi H, 2008, AM J OPHTHALMOL, V145, P509, DOI 10.1016/j.ajo.2007.10.014
  15. Louzada RN, 2017, CAN J OPHTHALMOL, V52, P419, DOI 10.1016/j.jcjo.2016.12.012
  16. Louzada RN, 2016, OSLI RETINA, V47, P960, DOI 10.3928/23258160-20161004-11
  17. MCDONNELL PJ, 1982, AM J OPHTHALMOL, V93, P777, DOI 10.1016/0002-9394(82)90474-3
  18. Mehta N, 2021, RETINA-J RET VIT DIS, V41, P29, DOI 10.1097/IAE.0000000000002797
  19. Niwa T, 2003, INVEST OPHTH VIS SCI, V44, P1652, DOI 10.1167/iovs.02-0404
  20. Philippakis E, 2018, EYE, V32, P590, DOI 10.1038/eye.2017.254
  21. PULIAFITO CA, 1995, OPHTHALMOLOGY, V102, P217
  22. Sadda SR, 2018, OPHTHALMOLOGY, V125, P537, DOI 10.1016/j.ophtha.2017.09.028
  23. Salter AB, 2012, OPHTHAL SURG LAS IM, V43, P184, DOI 10.3928/15428877-20120102-05
  24. Schaal KB, 2017, AM J OPHTHALMOL, V174, P145, DOI 10.1016/j.ajo.2016.11.002
  25. Spaide RF, 2018, PROG RETIN EYE RES, V64, P1, DOI 10.1016/j.preteyeres.2017.11.003
  26. Uchino E, 2001, ARCH OPHTHALMOL-CHIC, V119, P1475
  27. Wakely L, 2012, BRIT J OPHTHALMOL, V96, P1003, DOI 10.1136/bjophthalmol-2011-301287
  28. Wojtkowski M, 2005, OPHTHALMOLOGY, V112, P1734, DOI 10.1016/j.ophtha.2005.05.023