Influence of Vaginal Bacteria and D- and L-Lactic Acid Isomers on Vaginal Extracellular Matrix Metalloproteinase Inducer: Implications for Protection against Upper Genital Tract Infections

Carregando...
Imagem de Miniatura
Citações na Scopus
268
Tipo de produção
article
Data de publicação
2013
Editora
AMER SOC MICROBIOLOGY
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
WITKIN, Steven S.
MENDES-SOARES, Helena
JAYARAM, Aswathi
LEDGER, William J.
FORNEY, Larry J.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
MBIO, v.4, n.4, article ID e00460-13, 7p, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
We evaluated levels of vaginal extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase (MMP-8) in vaginal secretions in relation to the composition of vaginal bacterial communities and D-and L-lactic acid levels. The composition of vaginal bacterial communities in 46 women was determined by pyrosequencing the V1 to V3 region of 16S rRNA genes. Lactobacilli were dominant in 71.3% of the women, followed by Gardnerella (17.4%), Streptococcus (8.7%), and Enterococcus (2.2%). Of the lactobacillus-dominated communities, 51.5% were dominated by Lactobacillus crispatus, 36.4% by Lactobacillus iners, and 6.1% each by Lactobacillus gasseri and Lactobacillus jensenii. Concentrations of L-lactic acid were slightly higher in lactobacillus-dominated vaginal samples, but most differences were not statistically significant. D-Lactic acid levels were higher in samples containing L. crispatus than in those with L. iners (P < 0.0001) or Gardnerella (P = 0.0002). The relative proportion of D-lactic acid in vaginal communities dominated by species of lactobacilli was in concordance with the proportions found in axenic cultures of the various species grown in vitro. Levels of L-lactic acid (P < 0.0001) and the ratio of L-lactic acid to D-lactic acid (P = 0.0060), but not concentrations of D-lactic acid, were also correlated with EMMPRIN concentrations. Moreover, vaginal concentrations of EMMPRIN and MMP-8 levels were highly correlated (P< 0.0001). Taken together, the data suggest the relative proportion of L-to D-lactic acid isomers in the vagina may influence the extent of local EMMPRIN production and subsequent induction of MMP-8. The expression of these proteins may help determine the ability of bacteria to transverse the cervix and initiate upper genital tract infections. IMPORTANCE A large proportion of preterm births (>50%) result from infections caused by bacteria originating in the vagina, which requires that they traverse the cervix. Factors that influence susceptibility to these infections are not well understood; however, there is evidence that matrix metalloproteinase (MMP-8) is known to alter the integrity of the cervix. In this work, we show that concentrations of vaginal extracellular matrix metalloproteinase inducer (EMMPRIN) are influenced by members of the vaginal microbial community and concentrations of D-or L-lactic acid isomers in vaginal secretions. Elevated levels of D-lactic acid and the ratio of D-to L-lactic acid influence EMMPRIN concentrations as well as MMP-8 levels. Thus, isomers of lactic acid may function as signaling molecules that alter host gene expression and influence risk of infection-related preterm birth.
Palavras-chave
Referências
  1. Alakomi HL, 2000, APPL ENVIRON MICROB, V66, P2001, DOI 10.1128/AEM.66.5.2001-2005.2000
  2. Alvarez-Olmos MI, 2004, SEX TRANSM DIS, V31, P393, DOI 10.1097/01.OLQ.0000130454.83883.E9
  3. Braundmeier AG, 2012, REPROD SCI, V19, P1292, DOI 10.1177/1933719112450332
  4. Braundmeier AG, 2006, J CLIN ENDOCR METAB, V91, P2358, DOI 10.1210/jc.2005-0601
  5. Diaz-Cueto L, 2006, J SOC GYNECOL INVEST, V13, P430, DOI 10.1016/j.jsgi.2006.05.008
  6. Donders G, 2010, OBSTET GYNECOL SURV, V65, P462, DOI 10.1097/OGX.0b013e3181e09621
  7. Donders GGG, 2011, BJOG-INT J OBSTET GY, V118, P1163, DOI 10.1111/j.1471-0528.2011.03020.x
  8. Ewaschuk JB, 2005, J NUTR, V135, P1619
  9. Gajer P, 2012, SCI TRANSL MED, V4, pra52
  10. Gillespie JJ, 2011, INFECT IMMUN, V79, P4286, DOI 10.1128/IAI.00207-11
  11. Ginkel P D, 1993, Infect Dis Obstet Gynecol, V1, P94, DOI 10.1155/S1064744993000225
  12. Iacono KT, 2007, EXP MOL PATHOL, V83, P283, DOI 10.1016/j.yexmp.2007.08.014
  13. KIM SMF, 1991, APPL ENVIRON MICROB, V57, P2413
  14. LARSEN B, 1982, OBSTET GYNECOL, V60, P20
  15. Linhares IM, 2011, AM J OBSTET GYNECOL, V204, pe1
  16. Mossop H, 2012, REPROD SCI, V19, p395A
  17. Mossop H, 2011, OBSTET GYNECOL, V118, P840, DOI 10.1097/AOG.0b013e31822da9e9
  18. Murray CM, 2005, NAT CHEM BIOL, V1, P371, DOI 10.1038/nchembio744
  19. Noguchi K, 2004, COMPARATIVE MED, V54, P705
  20. O'Hanlon DE, 2011, BMC INFECT DIS, V11, DOI 10.1186/1471-2334-11-200
  21. Rahkonen L, 2009, HUM REPROD, V24, P2693, DOI 10.1093/humrep/dep284
  22. Ravel J, 2011, P NATL ACAD SCI USA, V108, P4680, DOI 10.1073/pnas.1002611107
  23. Rivera AJ, 2011, AM J PRIMATOL, V73, P119, DOI 10.1002/ajp.20851
  24. Rivera AJ, 2010, AM J PRIMATOL, V72, P467, DOI 10.1002/ajp.20795
  25. Shime H, 2008, J IMMUNOL, V180, P7175
  26. Spear GT, 2010, AIDS RES HUM RETROV, V26, P193, DOI 10.1089/aid.2009.0166
  27. TAGUCHI H, 1991, J BIOL CHEM, V266, P12588
  28. Tamrakar R, 2007, BMC INFECT DIS, V7, DOI 10.1186/1471-2334-7-128
  29. Tang J, 2008, CELL MOL LIFE SCI, V65, P2933, DOI 10.1007/s00018-008-8315-8
  30. Vegran F, 2011, CANCER RES, V71, P2550, DOI 10.1158/0008-5472.CAN-10-2828
  31. Verstraelen H, 2009, BMC MICROBIOL, V9, DOI 10.1186/1471-2180-9-116
  32. Wertz J, 2008, INTERDISCIP PERSPECT, V2008
  33. Wilson MC, 2005, J BIOL CHEM, V280, P27213, DOI 10.1074/jbc.M411950200
  34. Witkin SS, 2011, FEMS IMMUNOL MED MIC, V61, P153, DOI 10.1111/j.1574-695X.2010.00757.x
  35. Yoon BH, 2001, AM J OBSTET GYNECOL, V185, P1162, DOI 10.1067/mob.2001.117678