Does immobilization of dependent hand promote adaptative changes in cerebral cortex? An analysis through qEEG asymmetry

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Autores
MANAIA, Fernanda
TEIXEIRA, Silmar
VELASQUES, Bruna
BITTENCOURT, Juliana
SALLES, Jose Inacio
ARIAS-CARRION, Oscar
PERESSUTTI, Caroline
CARVALHO, Marcele Regine de
CAGY, Mauricio
Citação
NEUROSCIENCE LETTERS, v.538, p.20-25, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This study aimed to elucidate electrophysiological and cortical mechanisms involved when 15 healthy right-handed subjects executed an index finger flexion and extension task before and after hand immobilization, using qEEG beta band (13-30 Hz) asymmetry. This beta band is involved in motor activity and sensorial factors. Our hypothesis is that an increase in beta band asymmetry in pre-frontal, motor and parietal areas will occur in post-hand immobilization, because these areas need to reorganize for new planning, preparation and voluntary motor control. We found increase in beta band asymmetry during post-treatment task. We concluded that beta band asymmetry plays an important role in the analysis of cortical changes in several brain areas when associated to motor task. Furthermore, we assume that 48 h of hand immobilization change cortical functioning.
Palavras-chave
Hand immobilization, Asymmetry, Beta band, qEEG, Sensorimotor integration and motor control
Referências
  1. Agnew JA, 2004, NEUROIMAGE, V22, P289, DOI 10.1016/j.neuroimage.2003.12.038
  2. Andersen RA, 2002, ANNU REV NEUROSCI, V25, P189, DOI 10.1146/annurev.neuro.25.112701.142922
  3. Avanzino L, 2008, EUR J NEUROSCI, V27, P1285, DOI 10.1111/j.1460-9568.2008.06086.x
  4. Babiloni C, 2006, CLIN NEUROPHYSIOL, V117, P1000, DOI 10.1016/j.clinph.2005.12.028
  5. Babiloni C, 2011, INT J PSYCHOPHYSIOL, V82, P260, DOI 10.1016/j.ijpsycho.2011.09.008
  6. Baker SN, 2007, CURR OPIN NEUROBIOL, V17, P649, DOI [10.1016/j.conb.2008.01.007, 10.1016/i.conb.2008.01.007]
  7. Bolognini N, 2011, NEUROREHAB NEURAL RE, V25, P819, DOI 10.1177/1545968311411056
  8. Busa M., 2008, CLIN KINESIOLOGY, V64, P21
  9. Catalan MJ, 1998, BRAIN, V121, P253, DOI 10.1093/brain/121.2.253
  10. Chapman H, 2002, EUR J NEUROSCI, V15, P2037, DOI 10.1046/j.1460-9568.2002.02021.x
  11. Coan JA, 2003, PSYCHOPHYSIOLOGY, V40, P106, DOI 10.1111/1469-8986.00011
  12. Coan JA, 2004, BIOL PSYCHOL, V67, P7, DOI 10.1016/j.biopsycho.2004.03.002
  13. Davidson RJ, 2004, BIOL PSYCHOL, V67, P219, DOI 10.1016/j.biopsycho.2004.03.008
  14. Delorme Arnaud, 2011, Computational Intelligence & Neuroscience, DOI 10.1155/2011/130714
  15. Delorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009
  16. GESCHWIND N, 1985, ARCH NEUROL-CHICAGO, V42, P521
  17. Grech R., 2008, J NEUROENG REHABIL, V7, P05
  18. Haaland KY, 2004, BRAIN, V127, P1145, DOI 10.1093/brain/awh133
  19. Huber R, 2006, NAT NEUROSCI, V9, P1169, DOI 10.1038/nn1758
  20. Jaillard A, 2005, BRAIN, V128, P1122, DOI 10.1093/brain/awh456
  21. Jung T., 2000, PSYCHOPHYSIOLOGY, V37
  22. KAAS JH, 1991, ANNU REV NEUROSCI, V14, P137, DOI 10.1146/annurev.neuro.14.1.137
  23. Kane MJ, 2002, PSYCHON B REV, V9, P637, DOI 10.3758/BF03196323
  24. Kawashima R, 1998, EUR J NEUROSCI, V10, P2254, DOI 10.1046/j.1460-9568.1998.00237.x
  25. KIM SG, 1993, SCIENCE, V261, P615, DOI 10.1126/science.8342027
  26. Knyazeva MG, 1999, J NEUROPHYSIOL, V82, P3095
  27. Kobayashi M, 2004, NEUROLOGY, V62, P91
  28. Langer N, 2012, NEUROLOGY, V78, P182, DOI 10.1212/WNL.0b013e31823fcd9c
  29. Liepert J, 1995, ELECTROMYOGR MOTOR C, V97, P382, DOI 10.1016/0924-980X(95)00194-P
  30. Liepert J, 2001, J NEUROL, V248, P315, DOI 10.1007/s004150170207
  31. Lundbye-Jensen J, 2008, J APPL PHYSIOL, V105, P139, DOI 10.1152/japplphysiol.00687.2007
  32. Miller A, 2001, PSYCHOPHYSIOLOGY, V38, P500, DOI 10.1111/1469-8986.3830500
  33. Neuper C, 2001, INT J PSYCHOPHYSIOL, V43, P41, DOI 10.1016/S0167-8760(01)00178-7
  34. OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
  35. PETERS M, 1993, CORTEX, V29, P305
  36. Pfurtscheller G, 1997, INT J PSYCHOPHYSIOL, V26, P121, DOI 10.1016/S0167-8760(97)00760-5
  37. Pfurtscheller G, 1997, ELECTROEN CLIN NEURO, V102, P316, DOI 10.1016/S0013-4694(96)96612-2
  38. Polato D, 2008, REV BRAS MED ESPORTE, V14, P221, DOI 10.1590/S1517-86922008000300012
  39. Pollok B, 2006, J PHYSIOLOGY-PARIS, V99, P8, DOI 10.1016/j.jphysparis.2005.06.002
  40. Santos SG, 2009, REV BRAS CIN DES HUM, V11, P326
  41. Shi Y.X., 2011, ARCH PHYS MED REHAB, V92, P782
  42. Smith ME, 1999, COGNITIVE BRAIN RES, V7, P389, DOI 10.1016/S0926-6410(98)00043-3
  43. STUCCHI N, 1993, J EXP PSYCHOL HUMAN, V19, P1200, DOI 10.1037/0096-1523.19.6.1200
  44. Szurhaj W, 2003, CLIN NEUROPHYSIOL, V114, P107, DOI 10.1016/S1388-2457(02)00333-4
  45. Taub E, 1998, REHABIL PSYCHOL, V43, P152, DOI 10.1037/0090-5550.43.2.152
  46. Toussaint L., 2012, J EXPT PSYCHOL
  47. van den Berg F.E., 2011, PLOS ONE, V6, P1
  48. Verstynen T, 2005, J NEUROPHYSIOL, V93, P1209, DOI 10.1152/jn.00720.2004
  49. Viviani P, 1998, EXP BRAIN RES, V120, P531, DOI 10.1007/s002210050428
  50. Volkmann J, 1998, J NEUROPHYSIOL, V79, P2149
  51. Ward NS, 2004, ARCH NEUROL-CHICAGO, V61, P1844, DOI 10.1001/archneur.61.12.1844
  52. Weibull A, 2011, EUR J NEUROSCI, V33, P699, DOI 10.1111/j.1460-9568.2010.07551.x