Variability and Power to Detect Progression of Different Visual Field Patterns

Nenhuma Miniatura disponível
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
MELCHIOR, Bruna
PAULA, Jayter S.
V, Michael Boland
MYERS, Jonathan S.
WELLIK, Sarah R.
ELZE, Tobias
PASQUALE, Louis R.
SHEN, Lucy Q.
RITCH, Robert
Citação
OPHTHALMOLOGY GLAUCOMA, v.4, n.6, p.617-623, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose: To compare the variability and ability to detect visual field (VF) progression of 24-2, central 12 locations of the 24-2 and 10-2 VF tests in eyes with abnormal VFs. Design: Retrospective, multisite cohort. Participants: A total of 52 806 24-2 and 11 966 10-2 VF tests from 7307 eyes from the Glaucoma Research Network database were analyzed. Only eyes with >= 5 visits and >= 2 years of follow-up were included. Methods: Linear regression models were used to calculate the rates of mean deviation (MD) change (slopes), whereas their residuals were used to assess variability across the entire MD range. Computer simulations (n = 10 000) based on real MD residuals of our sample were performed to estimate power to detect significant progression (P < 5%) at various rates of MD change. Main Outcome Measures: Time required to detect progression. Results: For all 3 patterns, the MD variability was highest within the -5 to -20 decibel (dB) range and consistently lower with the 10-2 compared with 24-2 or central 24-2. Overall, time to detect confirmed significant progression at 80% power was the lowest with 10-2 VF, with a decrease of 14.6% to 18.5% when compared with 24-2 and a decrease of 22.9% to 26.5% when compared with central 24-2. Conclusions: Time to detect central VF progression was reduced with 10-2 MD compared with 24-2 and C24-2 MD in glaucoma eyes in this large dataset, in part because 10-2 tests had lower variability. These findings contribute to current evidence of the potential value of 10-2 testing in the clinical management of patients with glaucoma and in clinical trial design. (C) 2021 by the American Academy of Ophthalmology
Palavras-chave
Glaucoma, Macula, Progression, Visual field
Referências
  1. Abe RY, 2016, OPHTHALMOLOGY, V123, P552, DOI 10.1016/j.ophtha.2015.10.046
  2. Asano S, 2019, AM J OPHTHALMOL, V199, P140, DOI 10.1016/j.ajo.2018.11.004
  3. Bengtsson B, 2000, INVEST OPHTH VIS SCI, V41, P2201
  4. Blumberg DM, 2017, JAMA OPHTHALMOL, V135, P742, DOI 10.1001/jamaophthalmol.2017.1396
  5. Boland MV, 2016, OPHTHALMOLOGY, V123, P7, DOI 10.1016/j.ophtha.2015.08.041
  6. Bommakanti N, 2020, J GLAUCOMA, V29, P31, DOI 10.1097/IJG.0000000000001401
  7. Crabb DP, 2013, OPHTHALMOLOGY, V120, P1120, DOI 10.1016/j.ophtha.2012.11.043
  8. De Moraes CG, 2017, OPHTHALMOLOGY, V124, P1449, DOI 10.1016/j.ophtha.2017.04.021
  9. de Moraes CG, 2016, SURV OPHTHALMOL, V61, P597, DOI 10.1016/j.survophthal.2016.03.006
  10. De Moraes CG, ARVO J
  11. HEIJL A, 1987, ARCH OPHTHALMOL-CHIC, V105, P1544
  12. HEIJL A, 1989, AM J OPHTHALMOL, V108, P130, DOI 10.1016/0002-9394(89)90006-8
  13. HEIJL A, 1984, ACTA OPHTHALMOL, V62, P658
  14. Hood DC, 2019, INVEST OPHTH VIS SCI, V60, P4241, DOI 10.1167/iovs.19-27920
  15. Hood DC, 2018, INVEST OPHTH VIS SCI, V59, P5524, DOI 10.1167/iovs.18-25796
  16. Hood DC, 2018, J GLAUCOMA, V27, P657, DOI 10.1097/IJG.0000000000001010
  17. Hood DC, 2013, PROG RETIN EYE RES, V32, P1, DOI 10.1016/j.preteyeres.2012.08.003
  18. Hood DC, 2011, INVEST OPHTH VIS SCI, V52, P940, DOI 10.1167/iovs.10-5803
  19. Karakawa A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0078630
  20. KATZ J, 1987, ARCH OPHTHALMOL-CHIC, V105, P1083
  21. Murata H, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058695
  22. Otarola F, 2016, JAMA OPHTHALMOL, V134, P496, DOI 10.1001/jamaophthalmol.2016.0118
  23. Park SC, 2013, OPHTHALMOLOGY, V120, P1546, DOI 10.1016/j.ophtha.2013.01.045
  24. Phu J, 2020, AM J OPHTHALMOL, V219, P317, DOI 10.1016/j.ajo.2020.06.024
  25. Ramulu P, 2009, CURR OPIN OPHTHALMOL, V20, P92, DOI 10.1097/ICU.0b013e32832401a9
  26. Rao HL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127233
  27. Saeedi OJ, 2019, OPHTHALMOLOGY, V126, P822, DOI 10.1016/j.ophtha.2019.01.029
  28. Saunders LJ, 2016, EXPERT REV OPHTHALMO, V11, P227, DOI 10.1080/17469899.2016.1180246
  29. Sawada H, 2014, J GLAUCOMA, V23, P81, DOI 10.1097/IJG.0b013e318265bbdc
  30. Schiefer U, 2010, INVEST OPHTH VIS SCI, V51, P5685, DOI 10.1167/iovs.09-5067
  31. Sun Y, 2016, AM J OPHTHALMOL, V163, P45, DOI 10.1016/j.ajo.2015.12.006
  32. Tomairek RH, 2020, EUR J OPHTHALMOL, V30, P706, DOI 10.1177/1120672119836904
  33. Traynis I, 2014, JAMA OPHTHALMOL, V132, P291, DOI 10.1001/jamaophthalmol.2013.7656
  34. Wang MY, 2020, OPHTHALMOLOGY, V127, P731, DOI 10.1016/j.ophtha.2019.12.004
  35. Wang MY, 2020, JAMA OPHTHALMOL, V138, P190, DOI 10.1001/jamaophthalmol.2019.5413
  36. Wang MY, 2019, INVEST OPHTH VIS SCI, V60, P365, DOI 10.1167/iovs.18-25568
  37. Weinreb RN, 2004, LANCET, V363, P1711, DOI 10.1016/S0140-6736(04)16257-0
  38. Weinreb RN, 2014, JAMA-J AM MED ASSOC, V311, P1901, DOI 10.1001/jama.2014.3192
  39. Wu ZC, 2019, OPHTHALMOL GLAUCOMA, V2, P2019, DOI 10.1016/j.ogla.2019.01.003
  40. Wu ZC, 2018, TRANSL VIS SCI TECHN, V7, DOI 10.1167/tvst.7.3.22
  41. Yousefi S, 2020, OPHTHALMOLOGY, V127, P1170, DOI 10.1016/j.ophtha.2020.03.008