Magnetic resonance imaging and previous cesarean section in placenta accrete spectrum disorder: Predictor model

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER ESPANA
Citação
CLINICS, v.77, article ID 100027, 6p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: To evaluate objective criteria of Magnetic Resonance Imaging (MRI) of Placenta Accreta Spectrum disorder (PAS) analyzing interobserver agreement and to derive a model including imaging and clinical variables to predict PAS. Methods: A retrospective review including patients submitted to MRI with suspicious findings of PAS on ultrasound. Exclusion criteria were lack of pathology or surgical information and missing or poor-quality MRI. Two radiologists analyzed six MRI features, and significant clinical data were also recorded. PAS confirmed on pathology or during intraoperative findings were considered positive for the primary outcome. Variables were tested through logistic regression models. Results: Final study included 96 patients with a mean age of 33 years and 73.0% of previous C-sections. All MRI features were significantly associated with PAS for both readers. After logistic regression fit, including MRI signs with a moderate or higher interobserver agreement, intraplacental T2 dark band was the most significant radiologic criteria, and ROC analysis resulted in an AUC = 0.782. After including the most relevant clinical data (previous C-section) to the model, the ROC analysis improved to an AUC = 0.893. Conclusion: Simplified objective criteria on MRI, including intraplacental T2 dark band associated with clinical information of previous C-sections, had the highest accuracy and was used for a predictive model of PAS.
Palavras-chave
Placenta accrete, Placenta previa, Cesarean section, Magnetic resonance imaging
Referências
  1. Allen BC, 2013, RADIOL CLIN N AM, V51, P955, DOI 10.1016/j.rcl.2013.07.009
  2. Ghezzi CLA, 2021, BRIT J RADIOL, V94, DOI 10.1259/bjr.20210827
  3. [Anonymous], 2011, Obstet Gynecol, V118, P405, DOI 10.1097/AOG.0b013e31822c99af
  4. Baughman WC, 2008, RADIOGRAPHICS, V28, P1905, DOI 10.1148/rg.287085060
  5. Blaicher W, 2006, EUR J RADIOL, V57, P256, DOI 10.1016/j.ejrad.2005.11.025
  6. Bour L, 2014, EUR RADIOL, V24, P3150, DOI 10.1007/s00330-014-3354-z
  7. Buca D, 2018, ULTRASOUND OBST GYN, V52, P304, DOI 10.1002/uog.19070
  8. Clark HR, 2020, AM J ROENTGENOL, V214, P1417, DOI 10.2214/AJR.19.21705
  9. Collins SL, 2016, ULTRASOUND OBST GYN, V47, P271, DOI 10.1002/uog.14952
  10. D'Antonio F, 2014, ULTRASOUND OBST GYN, V44, P8, DOI 10.1002/uog.13327
  11. Derman AY, 2011, AM J ROENTGENOL, V197, P1514, DOI 10.2214/AJR.10.5443
  12. Elsayes KM, 2009, RADIOGRAPHICS, V29, P1371, DOI 10.1148/rg.295085242
  13. Familiari A, 2018, ACTA OBSTET GYN SCAN, V97, P507, DOI 10.1111/aogs.13258
  14. Finazzo F, 2020, ULTRASOUND OBST GYN, V55, P467, DOI 10.1002/uog.20381
  15. Higgins MF, 2013, EUR J OBSTET GYN R B, V171, P54, DOI 10.1016/j.ejogrb.2013.08.030
  16. Hull AD, 2011, CLIN PERINATOL, V38, P285, DOI 10.1016/j.clp.2011.03.010
  17. Iacovelli A, 2020, J MATERN-FETAL NEO M, V33, P471, DOI 10.1080/14767058.2018.1493453
  18. Jaraquemada JMP, 2005, ACTA OBSTET GYN SCAN, V84, P716, DOI 10.1111/j.0001-6349.2005.00832.x
  19. Jauniaux ERM, 2019, BJOG-INT J OBSTET GY, V126, pE1, DOI 10.1111/1471-0528.15306
  20. Jauniaux E, 2018, INT J GYNECOL OBSTET, V140, P274, DOI 10.1002/ijgo.12408
  21. Jha P, 2020, EUR RADIOL, V30, P2604, DOI 10.1007/s00330-019-06617-7
  22. Kilcoyne A, 2017, AM J ROENTGENOL, V208, P214, DOI 10.2214/AJR.16.16281
  23. LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
  24. Lax A, 2007, MAGN RESON IMAGING, V25, P87, DOI 10.1016/j.mri.2006.10.007
  25. Maher MA, 2013, ACTA OBSTET GYN SCAN, V92, P1017, DOI 10.1111/aogs.12187
  26. Maldjian C, 1999, MAGN RESON IMAGING, V17, P965, DOI 10.1016/S0730-725X(99)00035-1
  27. Masselli G, 2008, EUR RADIOL, V18, P1292, DOI 10.1007/s00330-008-0862-8
  28. Masselli G, 2013, ABDOM IMAGING, V38, P573, DOI 10.1007/s00261-012-9929-8
  29. Naderi M, 2019, AM J ROENTGENOL, V212, pW41, DOI 10.2214/AJR.18.20426
  30. Oyelese Y, 2006, OBSTET GYNECOL, V108, P694, DOI 10.1097/01.AOG.0000235870.24732.9d
  31. Palacios-Jaraquemada JM, 2020, J MATERN-FETAL NEO M, V33, P3377, DOI 10.1080/14767058.2019.1570494
  32. Sato T, 2017, ABDOM RADIOL, V42, P2146, DOI 10.1007/s00261-017-1100-0
  33. Silver RM, 2006, OBSTET GYNECOL, V107, P1226, DOI 10.1097/01.AOG.0000219750.79480.84
  34. Teo TH, 2009, CLIN RADIOL, V64, P511, DOI 10.1016/j.crad.2009.02.003
  35. Ueno Y, 2016, J MAGN RESON IMAGING, V44, P573, DOI 10.1002/jmri.25184
  36. Ueno Y, 2014, EUR RADIOL, V24, P881, DOI 10.1007/s00330-013-3076-7
  37. Varghese Binoj, 2013, Indian J Radiol Imaging, V23, P379, DOI 10.4103/0971-3026.125592
  38. Wu S, 2005, AM J OBSTET GYNECOL, V192, P1458, DOI 10.1016/j.ajog.2004.12.074