A New Recombinant Multiepitope Chimeric Protein of Leptospira interrogans Is a Promising Marker for the Serodiagnosis of Leptospirosis

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
V, Luis G. Fernandes
AVELAR, Katia E. S.
ROMERO, Eliete C.
HEINEMANN, Marcos B.
NASCIMENTO, Ana L. T. O.
Citação
TROPICAL MEDICINE AND INFECTIOUS DISEASE, v.7, n.11, article ID 362, 14p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The zoonotic disease leptospirosis is caused by pathogenic species of the genus Leptospira and was recently included in the list of Neglected Diseases by the World Health Organization. Leptospirosis burden is estimated to have over a million human cases and cause 60 thousand deaths annually, in addition to its economic impact and veterinary concern. The microscopic agglutination test (MAT), recommended by the World Health Organization, exhibits reduced sensitivity at the beginning of the disease, in addition to being technically difficult. New recombinant antigens are being pursued for rapid and specific serodiagnostic tests, especially in the initial phase of the disease, and chimeric multiepitope proteins are a strategy with a great potential to be implemented in serology. Based on previous subproteomic results, we designed a synthetic construct comprising 10 conserved leptospiral surface antigens, and the recombinant protein was purified and evaluated regarding its diagnostic potential. The protein termed rChi2 was recognized by antibodies in serum from patients both at the onset (MAT-) and in the convalescent (MAT+) phase in 75 and 82% of responders, respectively. In addition, rChi2 immunization in hamsters elicited a strong humoral response, and anti-rChi2 antibodies recognized several immobilized intact Leptospira species, validating its potential as an early, broad, and cross-reactive diagnostic test.
Palavras-chave
Leptospira, leptospirosis, chimeric protein, diagnosis, MAT
Referências
  1. ADLER B, 1980, J CLIN MICROBIOL, V11, P452, DOI 10.1128/JCM.11.5.452-457.1980
  2. Bettin EB, 2022, APPL MICROBIOL BIOT, V106, P173, DOI 10.1007/s00253-021-11726-9
  3. Bharti AR, 2003, LANCET INFECT DIS, V3, P757, DOI 10.1016/S1473-3099(03)00830-2
  4. Chalayon P, 2011, T ROY SOC TROP MED H, V105, P289, DOI 10.1016/j.trstmh.2011.01.008
  5. CHERNUKHA YG, 1976, ZBL BAKT-INT J MED M, V236, P336
  6. Costa F, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003898
  7. Courrol DD, 2022, FRONT CELL INFECT MI, V12, DOI 10.3389/fcimb.2022.966370
  8. Domingos RF, 2015, MICROBIOL-SGM, V161, P851, DOI 10.1099/mic.0.000041
  9. Dorneles J, 2020, VACCINE, V38, P8136, DOI 10.1016/j.vaccine.2020.10.086
  10. Eshghi A, 2015, INFECT IMMUN, V83, P3061, DOI 10.1128/IAI.00427-15
  11. FAINE S., 1999, LEPTOSPIRA LEPTOSPIR
  12. Fernandes LGV, 2017, INT J INFECT DIS, V57, P61, DOI 10.1016/j.ijid.2017.01.032
  13. Fernandes LGV, 2012, INFECT IMMUN, V80, P3679, DOI 10.1128/IAI.00474-12
  14. Figueredo JM, 2017, MICROBIOL-SGM, V163, P37, DOI 10.1099/mic.0.000411
  15. Garba B, 2018, MICROB PATHOGENESIS, V124, P136, DOI 10.1016/j.micpath.2018.08.028
  16. GRUBER A, 1995, BIOTECHNIQUES, V19, P28
  17. Haake DA, 2015, CURR TOP MICROBIOL, V387, P65, DOI 10.1007/978-3-662-45059-8_5
  18. Kitashoji E, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003879
  19. Ko AI, 1999, LANCET, V354, P820, DOI 10.1016/S0140-6736(99)80012-9
  20. Kumar P, 2022, BIOTECHNOL APPL BIOC, DOI 10.1002/bab.2389
  21. Kumar P, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.735373
  22. Kumari A, 2016, INT J BIOL MACROMOL, V91, P465, DOI 10.1016/j.ijbiomac.2016.05.109
  23. Lau CL, 2010, T ROY SOC TROP MED H, V104, P631, DOI 10.1016/j.trstmh.2010.07.002
  24. Levett PN, 2001, CLIN MICROBIOL REV, V14, P296, DOI 10.1128/CMR.14.2.296-326.2001
  25. Lucas DSD, 2011, VACCINE, V29, P3413, DOI 10.1016/j.vaccine.2011.02.084
  26. Malmstrom J, 2009, NATURE, V460, P762, DOI 10.1038/nature08184
  27. Maneewatch S, 2014, PROTEIN ENG DES SEL, V27, P135, DOI 10.1093/protein/gzu006
  28. Murray GL, 2013, VET MICROBIOL, V162, P305, DOI 10.1016/j.vetmic.2012.11.005
  29. Natarajaseenivasan K, 2008, ANN TROP MED PARASIT, V102, P699, DOI 10.1179/136485908X355229
  30. Natarajaseenivasan K, 2004, INDIAN J MED RES, V120, P151
  31. Natarajaseenivasan K, 2011, EUR J CLIN MICROBIOL, V30, P1383, DOI 10.1007/s10096-011-1232-z
  32. Oliveira TR, 2008, CLIN VACCINE IMMUNOL, V15, P1715, DOI 10.1128/CVI.00214-08
  33. Oliveira TL, 2019, VACCINE, V37, P776, DOI 10.1016/j.vaccine.2018.12.050
  34. Pereira PRM, 2017, INT J MED MICROBIOL, V307, P297, DOI 10.1016/j.ijmm.2017.05.006
  35. Putz EJ, 2022, J PROTEOMICS, V262, DOI 10.1016/j.jprot.2022.104602
  36. Reis RB, 2008, PLOS NEGLECT TROP D, V2, DOI 10.1371/journal.pntd.0000228
  37. Sapna K, 2022, J MICROBIOL METH, V195, DOI 10.1016/j.mimet.2022.106448
  38. Sarma A, 2021, PATHOGENS, V10, DOI 10.3390/pathogens10070852
  39. Seixas FK, 2007, VACCINE, V26, P88, DOI 10.1016/j.vaccine.2007.10.052
  40. SILVA MV, 1995, J TROP MED HYG, V98, P268
  41. Srimanote P, 2008, J MICROBIOL METH, V72, P73, DOI 10.1016/j.mimet.2007.10.012
  42. Sun AH, 2011, BIOMED ENVIRON SCI, V24, P291, DOI 10.3967/0895-3988.2011.03.013
  43. Takahashi M.B., 2022, OVERCOMING PRO UNPUB
  44. TURNER LH, 1970, T ROY SOC TROP MED H, V64, P623, DOI 10.1016/0035-9203(70)90087-8
  45. TURNER LH, 1968, T ROY SOC TROP MED H, V62, P880, DOI 10.1016/0035-9203(68)90017-5
  46. Vedhagiri K, 2013, PATHOG GLOB HEALTH, V107, P130, DOI 10.1179/2047773213Y.0000000088
  47. Verma A, 2008, CLIN VACCINE IMMUNOL, V15, P1019, DOI 10.1128/CVI.00203-07
  48. WATT G, 1988, J INFECT DIS, V157, P840, DOI 10.1093/infdis/157.4.840
  49. Zeng LB, 2015, J PROTEOMICS, V112, P27, DOI 10.1016/j.jprot.2014.08.015
  50. Zhang Y, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-40
  51. Zhylkibayev A, 2018, TROP BIOMED, V35, P280