Advanced Glycation End Products and Bone Metabolism in Patients with Chronic Kidney Disease

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
QUADROS, Kelcia R. S.
ROZA, Noemi A. V.
FRANCA, Renata A.
ESTEVES, Andre B. A.
BARRETO, Joaquim
CARAMORI, Jacqueline Teixeira
SPOSITO, Andrei C.
OLIVEIRA, Rodrigo Bueno de
Citação
JBMR PLUS, v.7, n.3, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Advanced glycation end products (AGEs) accumulation may be involved in the progression of CKD-bone disorders. We sought to determine the relationship between AGEs measured in the blood, skin, and bone with histomorphometry parameters, bone protein, gene expression, and serum biomarkers of bone metabolism in patients with CKD stages 3 to 5D patients. Serum levels of AGEs were estimated by pentosidine, glycated hemoglobin (A1c), and N-carboxymethyl lysine (CML). The accumulation of AGEs in the skin was estimated from skin autofluorescence (SAF). Bone AGEs accumulation and multiligand receptor for AGEs (RAGEs) expression were evaluated by immunohistochemistry; bone samples were used to evaluate protein and gene expression and histomorphometric analysis. Data are from 86 patients (age: 51 +/- 13 years; 60 [70%] on dialysis). Median serum levels of pentosidine, CML, A1c, and SAF were 71.6 pmol/mL, 15.2 ng/mL, 5.4%, and 3.05 arbitrary units, respectively. AGEs covered 3.92% of trabecular bone and 5.42% of the cortical bone surface, whereas RAGEs were expressed in 0.7% and 0.83% of trabecular and cortical bone surfaces, respectively. AGEs accumulation in bone was inversely related to serum receptor activator of NF-KB ligand/parathyroid hormone (PTH) ratio (R = -0.25; p = 0.03), and RAGE expression was negatively related to serum tartrate-resistant acid phosphatase-5b/PTH (R = -0.31; p = 0.01). Patients with higher AGEs accumulation presented decreased bone protein expression (sclerostin [1.96 (0.11-40.3) vs. 89.3 (2.88-401) ng/mg; p = 0.004]; Dickkopf-related protein 1 [0.064 (0.03-0.46) vs. 1.36 (0.39-5.87) ng/mg; p = 0.0001]; FGF-23 [1.07 (0.4-32.6) vs. 44.1 (6-162) ng/mg; p = 0.01]; and osteoprotegerin [0.16 (0.08-2.4) vs. 6.5 (1.1-23.7) ng/mg; p = 0.001]), upregulation of the p53 gene, and downregulation of Dickkopf-1 gene expression. Patients with high serum A1c levels presented greater cortical porosity and Mlt and reduced osteoblast surface/bone surface, eroded surface/bone surface, osteoclast surface/bone surface, mineral apposition rate, and adjusted area. Cortical thickness was negatively correlated with serum A1c (R = -0.28; p = 0.02) and pentosidine levels (R = -0.27; p = 0.02). AGEs accumulation in the bone of CKD patients was related to decreased bone protein expression, gene expression changes, and increased skeletal resistance to PTH; A1c and pentosidine levels were related to decreased cortical thickness; and A1c levels were related to increased cortical porosity and Mlt.
Palavras-chave
ADVANCED GLYCATION END PRODUCTS, BONE METABOLISM, CHRONIC KIDNEY DISEASE
Referências
  1. Alem AM, 2000, KIDNEY INT, V58, P396, DOI 10.1046/j.1523-1755.2000.00178.x
  2. Aoki C, 2013, LAB INVEST, V93, P1170, DOI 10.1038/labinvest.2013.105
  3. Block GA, 2004, J AM SOC NEPHROL, V15, P2208, DOI 10.1097/01.ASN.0000133041.27682.A2
  4. Campbell GM, 2016, BONE, V91, P186, DOI 10.1016/j.bone.2016.08.003
  5. Carrillo-Lopez N, 2016, KIDNEY INT, V90, P77, DOI 10.1016/j.kint.2016.01.024
  6. Chen NX, 2020, J BONE MINER RES, V35, P608, DOI 10.1002/jbmr.3925
  7. Custodio MR, 2012, NEPHROL DIAL TRANSPL, V27, P1437, DOI 10.1093/ndt/gfr447
  8. Dempster DW, 2013, J BONE MINER RES, V28, P1, DOI 10.1002/jbmr.1805
  9. Fusaro M, 2021, NEPHROL DIAL TRANSPL, V36, P405, DOI 10.1093/ndt/gfz196
  10. Gornes SA, 2008, CLIN J AM SOC NEPHRO, V3, P1446, DOI 10.2215/CJN.00240108
  11. Hammes HP, 1999, DIABETOLOGIA, V42, P603, DOI 10.1007/s001250051201
  12. Haus JM, 2007, J APPL PHYSIOL, V103, P2068, DOI 10.1152/japplphysiol.00670.2007
  13. Hay E, 2016, GERONTOLOGY, V62, P618, DOI 10.1159/000446278
  14. Hein GE, 2006, CLIN CHIM ACTA, V371, P32, DOI 10.1016/j.cca.2006.03.017
  15. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group, 2013, KIDNEY INT SUPPL, V3, P1
  16. Kim S, 2013, BBA-GEN SUBJECTS, V1830, P4928, DOI 10.1016/j.bbagen.2013.06.035
  17. Ko LJ, 1996, GENE DEV, V10, P1054, DOI 10.1101/gad.10.9.1054
  18. Levey AS, 2009, ANN INTERN MED, V150, P604, DOI 10.7326/0003-4819-150-9-200905050-00006
  19. Li Y, 2020, CELL PROLIFERAT, V53, DOI 10.1111/cpr.12834
  20. Meerwaldt R, 2004, DIABETOLOGIA, V47, P1324, DOI 10.1007/s00125-004-1451-2
  21. Mitchell DM, 2020, J CLIN ENDOCR METAB, V105, DOI 10.1210/clinem/dgz221
  22. Mitome J, 2011, CALCIFIED TISSUE INT, V88, P521, DOI 10.1007/s00223-011-9488-y
  23. Moe S, 2006, KIDNEY INT, V69, P1945, DOI 10.1038/sj.ki.5000414
  24. Moe SM, 2016, CLIN J AM SOC NEPHRO, V11, P1929, DOI 10.2215/CJN.09500916
  25. Nagaraj RH, 2012, AMINO ACIDS, V42, P1205, DOI 10.1007/s00726-010-0778-x
  26. Notsu M, 2017, CALCIFIED TISSUE INT, V100, P402, DOI 10.1007/s00223-017-0243-x
  27. Nozawa S, 2018, JCI INSIGHT, V3, DOI 10.1172/jci.insight.89624
  28. Ott C, 2014, REDOX BIOL, V2, P411, DOI 10.1016/j.redox.2013.12.016
  29. Paloian NJ, 2014, AM J PHYSIOL-RENAL, V307, pF891, DOI 10.1152/ajprenal.00163.2014
  30. Park SY, 2021, J KOREAN MED SCI, V36, DOI 10.3346/jkms.2021.36.e239
  31. Piccoli A, 2020, J BONE MINER RES, V35, P2415, DOI 10.1002/jbmr.4153
  32. Pinzone JJ, 2009, BLOOD, V113, P517, DOI 10.1182/blood-2008-03-145169
  33. Schiavi SC, 2016, KIDNEY INT, V90, P17, DOI 10.1016/j.kint.2016.03.028
  34. Sitara D, 2006, AM J PATHOL, V169, P2161, DOI 10.2353/ajpath.2006.060329
  35. Sroga GE, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0117046
  36. Stinghen AEM, 2016, J AM SOC NEPHROL, V27, P354, DOI 10.1681/ASN.2014101047
  37. Tang SY, 2011, J BIOMECH, V44, P330, DOI 10.1016/j.jbiomech.2010.10.016
  38. Tominaga N, 2021, BMC NEPHROL, V22, DOI 10.1186/s12882-021-02482-z
  39. Verma N, 2017, J CELL PHYSIOL, V232, P3598, DOI 10.1002/jcp.25828
  40. Wang H, 2008, J BONE MINER RES, V23, P939, DOI 10.1359/JBMR.080220
  41. Willett TL, 2014, CURR OSTEOPOROS REP, V12, P329, DOI 10.1007/s11914-014-0214-3
  42. Yamagishi S, 2011, CURR DRUG TARGETS, V12, P2096, DOI 10.2174/138945011798829456