Soulamarin Isolated from Calophyllum brasiliense (Clusiaceae) Induces Plasma Membrane Permeabilization of Trypanosoma cruzi and Mytochondrial Dysfunction

Carregando...
Imagem de Miniatura
Citações na Scopus
58
Tipo de produção
article
Data de publicação
2013
Editora
PUBLIC LIBRARY SCIENCE
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
REA, Alexandre
TEMPONE, Andre G.
MESQUITA, Juliana T.
RODRIGUES, Eliana
SILVA, Luciana Grus M.
SARTORELLI, Patricia
LAGO, Joao Henrique G.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
PLOS NEGLECTED TROPICAL DISEASES, v.7, n.12, article ID e2556, 8p, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Chagas disease is caused by the parasitic protozoan Trypanosoma cruzi. It has high mortality as well as morbidity rates and usually affects the poorer sections of the population. The development of new, less harmful and more effective drugs is a promising research target, since current standard treatments are highly toxic and administered for long periods. Fractioning of methanol (MeOH) extract of the stem bark of Calophyllum brasiliense (Clusiaceae) resulted in the isolation of the coumarin soulamarin, which was characterized by one- and two-dimensional H-1- and C-13 NMR spectroscopy as well as ESI mass spectrometry. All data obtained were consistent with a structure of 6-hydroxy-4-propyl-5-(3-hydroxy-2-methyl-1-oxobutyl)-6,6-dimethylpyrane-[2,3:8,7]-benzopyran-2-one for soulamarin. Colorimetric MTT assays showed that soulamarin induces trypanocidal effects, and is also active against trypomastigotes. Hemolytic activity tests showed that soulamarin is unable to induce any observable damage to erythrocytes (c(max.)=1,300 mu M). The lethal action of soulamarin against T. cruzi was investigated by using amino(4-(6-(amino(iminio)methyl)-1H-indol-2-yl)phenyl)methaniminium chloride (SYTOX Green and 1H,5H,11H,15H-Xantheno[2,3,4-ij:5,6,7-ij]diquinolizin-18-ium, 9-[4-(chloromethyl)phenyl]-2,3,6,7,12,13,16,17-octahydro-chloride (MitoTracker Red) as fluorimetric probes. With the former, soulamarin showed dose-dependent permeability of the plasma membrane, relative to fully permeable Triton X-100-treated parasites. Spectrofluorimetric and fluorescence microscopy with the latter revealed that soulamarin also induced a strong depolarization (ca. 97%) of the mitochondrial membrane potential. These data demonstrate that the lethal action of soulamarin towards T. cruzi involves damages to the plasma membrane of the parasite and mitochondrial dysfunction without the additional generation of reactive oxygen species, which may have also contributed to the death of the parasites. Considering the unique mitochondrion of T. cruzi, secondary metabolites of plants affecting the bioenergetic system as soulamarin may contribute as scaffolds for the design of novel and selective drug candidates for neglected diseases, mainly Chagas disease. Author Summary Chagas disease is a parasitic protozoan that affects the poorest population in the world, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, the discovery of novel, safe and more efficacious drugs is essential. Natural products isolated from plants are commonly used as drug prototypes or precursors to treat parasitic diseases. As part of our investigation of bioactive compounds from Brazilian flora, the present study was undertaken in order to determine the antitrypanosomal effects of the soulamarin, a coumarin isolated from the stem bark of Callophyllum brasiliense (Clusiaceae), against Trypanossoma cruzi. This study moreover investigated the lethal action of soulamarin towards the parasite. Considering the obtained results, secondary metabolites of plants affecting the bioenergetic system as soulamarin may contribute as scaffolds for the design of novel and selective drug candidates for neglected diseases, mainly Chagas disease.
Palavras-chave
Referências
  1. Bern C, 2009, CLIN INFECT DIS, V49, pE52, DOI 10.1086/605091
  2. Bernardes LSC, 2013, CURR MED CHEM, V20, P2673
  3. Bettiol E, 2009, PLOS NEGLECT TROP D, V3, DOI 10.1371/journal.pntd.0000384
  4. Boonstra J, 2004, GENE, V337, P1, DOI 10.1016/j.gene.2004.04.032
  5. Brand MD, 2011, BIOCHEM J, V435, P297, DOI 10.1042/BJ20110162
  6. Brenzan MA, 2012, PHYTOMEDICINE, V19, P223, DOI 10.1016/j.phymed.2011.10.008
  7. Brown JM, 1993, ORG SYNTH COLL, V8, P420
  8. Buckner FS, 2012, INT J PARASITOL-DRUG, V2, P236, DOI 10.1016/j.ijpddr.2011.12.002
  9. Carvalho L, 2010, ANTIMICROB AGENTS CH, V54, P5344, DOI 10.1128/AAC.00790-10
  10. Cechinel V, 2009, CHEM BIODIVERS, V6, P313, DOI 10.1002/cbdv.200800082
  11. Chen L, 2010, J AM HEART ASS, V1
  12. Coura JR, 2011, MEM I OSWALDO CRUZ, V106, P641, DOI 10.1590/S0074-02762011000600001
  13. Coura JR, 2012, REV SOC BRAS MED TRO, V45, P286, DOI 10.1590/S0037-86822012000300002
  14. Daliry A, 2011, ANTIMICROB AGENTS CH, V55, P4765, DOI 10.1128/AAC.00229-11
  15. Moreira DRD, 2007, EUR J MED CHEM, V42, P351, DOI 10.1016/j.ejmech.2006.10.007
  16. De Souza EM, 2011, EXP PARASITOL, V127, P429, DOI 10.1016/j.exppara.2010.10.010
  17. Dias-de-Toranzo EG, 1988, EXPERIENTIA, V44, P880
  18. Ee GCL, 2011, MOLECULES, V16, P9721, DOI 10.3390/molecules16119721
  19. Fernandes MP, 2010, J BIOENERG BIOMEMBR, V42, P69, DOI 10.1007/s10863-010-9268-9
  20. Ferreira SB, 2011, EUR J MED CHEM, V46, P3071, DOI 10.1016/j.ejmech.2011.03.012
  21. Fidalgo LM, 2011, PHARM RES-DORDR, V28, P2758, DOI 10.1007/s11095-011-0586-3
  22. Gehrke SS, 2013, BIOORGAN MED CHEM, V21, P805, DOI 10.1016/j.bmc.2012.11.009
  23. Grecco SD, 2012, EXP PARASITOL, V130, P141, DOI 10.1016/j.exppara.2011.11.002
  24. Grecco SS, 2010, PARASITOL RES, V106, P1245, DOI 10.1007/s00436-010-1771-8
  25. Gupta S, 2009, FREE RADICAL BIO MED, V47, P1414, DOI 10.1016/j.freeradbiomed.2009.08.008
  26. Kessler RL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0055497
  27. Kitamura ROS, 2006, PHYTOCHEMISTRY, V67, P2398, DOI 10.1016/j.phytochem.2006.08.007
  28. Lane JE, 1996, AM J TROP MED HYG, V55, P263
  29. Mangoni ML, 2005, J BIOL CHEM, V280, P984, DOI 10.1074/jbc.M410795200
  30. MEIRELLES MNL, 1982, ACTA TROP, V39, P195
  31. Menna-Barreto RFS, 2009, FREE RADICAL BIO MED, V47, P644, DOI 10.1016/j.freeradbiomed.2009.06.004
  32. Morais TR, 2012, PARASITOL RES, V110, P95, DOI 10.1007/s00436-011-2454-9
  33. Noldin VF, 2006, QUIM NOVA, V29, P549, DOI 10.1590/S0100-40422006000300025
  34. Perez-Cruz F, 2012, BIOORG MED CHEM LETT, V22, P5569, DOI 10.1016/j.bmcl.2012.07.013
  35. Rassi A, 2012, INFECT DIS CLIN N AM, V26, P275, DOI 10.1016/j.idc.2012.03.002
  36. Reimao JQ, 2010, BIOORGAN MED CHEM, V18, P8044, DOI 10.1016/j.bmc.2010.09.015
  37. Reyes-Chilpa R, 2008, MEM I OSWALDO CRUZ, V103, P431, DOI 10.1590/S0074-02762008000500004
  38. Ribeiro GA, 2013, J ANTIMICROB CHEMOTH, V68, P789, DOI 10.1093/jac/dks498
  39. Roy A, 2008, MOL PHARMACOL, V74, P1292, DOI 10.1124/mol.108.050161
  40. Santa-Rita RM, 2006, PARASITOL RES, V100, P187, DOI 10.1007/s00436-006-0250-8
  41. Scio E, 2003, J NAT PROD, V66, P634, DOI 10.1021/np020597r
  42. Sen N, 2008, CURR PHARM DESIGN, V14, P839, DOI 10.2174/138161208784041024
  43. Soeiro MNC, 2013, PARASITOLOGY, V140, P929, DOI 10.1017/S0031182013000292
  44. SOEIRO MNC, 2011, OPEN MED CHEM J, V5, P21
  45. Tempone Andre Gustavo, 2007, Cardiovascular & Hematological Agents in Medicinal Chemistry, V5, P222
  46. Veiga-Santos P, 2012, INT J ANTIMICROB AG, V40, P61, DOI 10.1016/j.ijantimicag.2012.03.009
  47. VERCESI AE, 1991, J BIOL CHEM, V266, P14431
  48. Williams RAM, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002695
  49. World Health Organization, 2010, WKLY EPIDEMIOL REC, V85, P334
  50. Zhang DX, 2007, AM J PHYSIOL-HEART C, V292, pH2023, DOI 10.1152/ajpheart.01283.2006