ER stress is associated with reduced ABCA-1 protein levels in macrophages treated with advanced glycated albumin - Reversal by a chemical chaperone

Carregando...
Imagem de Miniatura
Citações na Scopus
30
Tipo de produção
article
Data de publicação
2012
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, v.44, n.7, p.1078-1086, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
ATP-binding cassette transporter A1 mediates the export of excess cholesterol from macrophages, contributing to the prevention of atherosclerosis. Advanced glycated albumin (AGE-alb) is prevalent in diabetes mellitus and is associated with the development of atherosclerosis. Independently of changes in ABCA-1 mRNA levels, AGE-alb induces oxidative stress and reduces ABCA-1 protein levels, which leads to macrophage lipid accumulation. These metabolic conditions are known to elicit endoplasmic reticulum (ER) stress. We sought to determine if AGE-alb induces ER stress and unfolded protein response (UPR) in macrophages and how disturbances to the ER could affect ABCA-1 content and cholesterol efflux in macrophages. AGE-alb induced a time-dependent increase in ER stress and UPR markers. ABCA-1 content and cellular cholesterol efflux were reduced by 33% and 47%, respectively, in macrophages treated with AGE-alb, and both were restored by treatment with 4-phenyl butyric acid (a chemical chaperone that alleviates ER stress), but not MG132 (a proteasome inhibitor). Tunicamycin, a classical ER stress inductor, also impaired ABCA-1 expression and cholesterol efflux (showing a decrease of 61% and 82%, respectively), confirming the deleterious effect of ER stress in macrophage cholesterol accumulation. Glycoxidation induces macrophage ER stress, which relates to the reduction in ABCA-1 and in reverse cholesterol transport, endorsing the adverse effect of macrophage ER stress in atherosclerosis. Thus, chemical chaperones that alleviate ER stress may represent a useful tool for the prevention and treatment of atherosclerosis in diabetes.
Palavras-chave
Advanced glycated albumin, ABCA-1, Atherosclerosis, Reverse cholesterol transport
Referências
  1. Alhusaini S, 2010, BIOCHEM BIOPH RES CO, V397, P472, DOI 10.1016/j.bbrc.2010.05.138
  2. Anderson MM, 1999, J CLIN INVEST, V104, P103, DOI 10.1172/JCI3042
  3. Basta G, 2005, ARTERIOSCL THROM VAS, V25, P1401, DOI 10.1161/01.ATV.0000167522.48370.5e
  4. BASU SK, 1976, P NATL ACAD SCI USA, V73, P3178, DOI 10.1073/pnas.73.9.3178
  5. Cohen MP, 2003, ARCH BIOCHEM BIOPHYS, V419, P25, DOI 10.1016/j.abb.2003.08.012
  6. de Souza Pinto R, 2012, LIPIDS
  7. Earl SF, 2011, DIABETES CARE, V34, P1337
  8. Engin F, 2010, DIABETES OBES METAB, V12, P108, DOI 10.1111/j.1463-1326.2010.01282.x
  9. Feng B, 2003, NAT CELL BIOL, V5, P781, DOI 10.1038/ncb1035
  10. Hetz C, 2006, SCIENCE, V312, P572, DOI 10.1126/science.1123480
  11. Hotamisligil GS, 2010, CELL, V140, P900, DOI 10.1016/j.cell.2010.02.034
  12. Iborra RT, 2011, LIPIDS HEALTH DIS, V10, DOI 10.1186/1476-511X-10-172
  13. Isoda K, 2007, ATHEROSCLEROSIS, V192, P298, DOI 10.1016/j.atherosclerosis.2006.07.023
  14. Iwashima Y, 2000, BIOCHEM BIOPH RES CO, V277, P368, DOI 10.1006/bbrc.2000.3685
  15. Kang MH, 2010, TRENDS CARDIOVAS MED, V20, P41, DOI 10.1016/j.tcm.2010.03.006
  16. Kincaid MM, 2007, ANTIOXID REDOX SIGN, V9, P2373, DOI 10.1089/ars.2007.1817
  17. LOWRY OH, 1951, J BIOL CHEM, V193, P165
  18. Machado AP, 2006, INT J BIOCHEM CELL B, V38, P392, DOI 10.1016/j.biocel.2005.09.016
  19. Machado-Lima A, 2010, DIABETES, V59, pA240
  20. Moheimani F, 2010, BBA-MOL BASIS DIS, V1802, P561, DOI 10.1016/j.bbadis.2010.02.007
  21. Myoishi M, 2007, CIRCULATION, V116, P1226, DOI 10.1161/CIRCULATIONAHA.106.682054
  22. Ozcan U, 2006, SCIENCE, V313, P1137, DOI 10.1126/science.1128294
  23. Pageon H, 2007, EUR J DERMATOL, V17, P12
  24. Passarelli M, 2005, DIABETES, V54, P2198, DOI 10.2337/diabetes.54.7.2198
  25. Ron D, 2007, NAT REV MOL CELL BIO, V8, P519, DOI 10.1038/nrm2199
  26. Sage AT, 2010, AM J PHYSIOL-ENDOC M, V298, P499
  27. Tall AR, 2002, J CLIN INVEST, V110, P899, DOI 10.1172/JCI200216391
  28. Tan KCB, 2009, DIABETES OBES METAB, V11, P534, DOI 10.1111/j.1463-1326.2008.01012.x
  29. Tang CR, 2009, BBA-MOL CELL BIOL L, V1791, P563, DOI 10.1016/j.bbalip.2009.03.011
  30. Tsukano H, 2010, ARTERIOSCL THROM VAS, V30, P1925, DOI 10.1161/ATVBAHA.110.206094
  31. Wellington CL, 2002, LAB INVEST, V82, P273
  32. Zelcer K, 2009, SCIENCE, V325, P100
  33. Zhang KZ, 2008, NATURE, V454, P455, DOI 10.1038/nature07203
  34. Zhou J, 2005, CIRCULATION, V111, P1814, DOI 10.1161/01.CIR.0000160864.31351.C1