Wireless Device with Energy Management for Closed-Loop Deep Brain Stimulation (CLDBS)

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
NORDI, Tiago Matheus
GINJA, Gabriel Augusto
GOUNELLA, Rodrigo
COLOMBARI, Eduardo
MOREIRA, Melkzedekue M. Alcantara
AFONSO, Jose A. A.
MONTEIRO, Vitor
AFONSO, Joao L. L.
CARMO, Joao Paulo
Citação
ELECTRONICS, v.12, n.14, article ID 3082, 21p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Deep brain stimulation (DBS) is an effective and safe medical treatment that improves the lives of patients with a wide range of neurological and psychiatric diseases, and has been consolidated as a first-line tool in the last two decades. Closed-loop deep brain stimulation (CLDBS) pushes this tool further by automatically adjusting the stimulation parameters to the brain response in real time. The main contribution of this paper is a low-size/power-controlled, compact and complete CLDBS system with two simultaneous acquisition channels, two simultaneous neurostimulation channels and wireless communication. Each channel has a low-noise amplifier (LNA) buffer in differential configuration to eliminate the DC signal component of the input. Energy management is efficiently done by the control and communication unit. The battery supports almost 9 h with both the acquisition and stimulation circuits active. If only the stimulation circuit is used as an Open Loop DBS, the battery can hold sufficient voltage for 24 h of operation. The whole system is low-cost and portable and therefore it could be used as a wearable device.
Palavras-chave
closed-loop deep brain stimulation (CLDBS), neurostimulation, implantable devices, internet of things (IoT), energy management
Referências
  1. Adams SD, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0212554
  2. [Anonymous], 2013, AN1515 TEX INSTR
  3. Bittar RG, 2005, J CLIN NEUROSCI, V12, P457, DOI 10.1016/j.jocn.2004.09.001
  4. Bouthour W, 2019, NAT REV NEUROL, V15, P343, DOI 10.1038/s41582-019-0166-4
  5. Cury RG, 2016, EUR J PAIN, V20, P151, DOI 10.1002/ejp.745
  6. Ghilardi MGD, 2018, NEUROLOGY, V90, P476, DOI 10.1212/WNL.0000000000005076
  7. Drobisz D, 2019, BEHAV BRAIN RES, V359, P266, DOI 10.1016/j.bbr.2018.11.004
  8. Ewing SG, 2013, J NEUROSCI METH, V219, P324, DOI 10.1016/j.jneumeth.2013.08.003
  9. Ewing SG, 2013, J NEUROSCI METH, V213, P228, DOI 10.1016/j.jneumeth.2012.12.008
  10. Figee M, 2022, NEUROTHERAPEUTICS, V19, P1229, DOI 10.1007/s13311-022-01270-3
  11. Fluri F, 2017, J NEUROSCI METH, V291, P249, DOI 10.1016/j.jneumeth.2017.08.024
  12. Fonoff E.T., 2016, CAP TULO LIVRO CONDU, V11th, P53
  13. Franco R, 2016, BRAIN SCI, V6, DOI 10.3390/brainsci6030021
  14. Gadot R, 2022, J NEUROL NEUROSUR PS, V93, P1166, DOI 10.1136/jnnp-2021-328738
  15. Hickey P, 2016, FRONT NEUROSCI-SWITZ, V10, DOI 10.3389/fnins.2016.00173
  16. Hoang KB, 2017, FRONT NEUROSCI-SWITZ, V11, DOI 10.3389/fnins.2017.00564
  17. Kolbl F, 2016, IEEE T BIOMED CIRC S, V10, P72, DOI 10.1109/TBCAS.2014.2368788
  18. Kouzani AZ, 2013, IEEE J TRANSL ENG HE, V1, DOI 10.1109/JTEHM.2013.2264093
  19. Marchand S, 2003, PAIN, V105, P481, DOI 10.1016/S0304-3959(03)00265-3
  20. Mayfield Clinic, 2018, DEEP BRAIN STIMULATI
  21. Nordi T.M., 2021, P 36 C DES CIRC INT
  22. Owen SLF, 2006, PAIN, V120, P202, DOI 10.1016/j.pain.2005.09.035
  23. Pinnell RC, 2015, J NEURAL ENG, V12, DOI 10.1088/1741-2560/12/6/066015
  24. Pinnell RC, 2018, FRONT NEUROSCI-SWITZ, V12, DOI 10.3389/fnins.2018.00231
  25. Rehncrona S, 2003, MOVEMENT DISORD, V18, P163, DOI 10.1002/mds.10309
  26. Sheth SA, 2022, BIOL PSYCHIAT, V92, P246, DOI 10.1016/j.biopsych.2021.11.007
  27. Stanfel D, 2022, MAR DRUGS, V20, DOI 10.3390/md20050330
  28. Tibar H, 2020, J NEUROSCI METH, V333, DOI 10.1016/j.jneumeth.2019.108577
  29. Vidailhet M, 2005, NEW ENGL J MED, V352, P459, DOI 10.1056/NEJMoa042187