A novel shape-based approach to identify gestational age-adjusted growth patterns from birth to 11 years of age

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
LOPEZ-DOMINGUEZ, Lorena
BASSANI, Diego G.
BOURDON, Celine
MASSARA, Paraskevi
SANTOS, Ina S.
BARROS, Aluisio. J. D.
COMELLI, Elena M.
BANDSMA, Robert H. J.
Citação
SCIENTIFIC REPORTS, v.13, n.1, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Child growth patterns assessment is critical to design public health interventions. However, current analytical approaches may overlook population heterogeneity. To overcome this limitation, we developed a growth trajectories clustering pipeline that incorporates a shape-respecting distance, baseline centering (i.e., birth-size normalized trajectories) and Gestational Age (GA)-correction to characterize shape-based child growth patterns. We used data from 3945 children (461 preterm) in the 2004 Pelotas Birth Cohort with at least 3 measurements between birth (included) and 11 years of age. Sex-adjusted weight-, length/height- and body mass index-for-age z-scores were derived at birth, 3 months, and at 1, 2, 4, 6 and 11 years of age (INTERGROWTH-21st and WHO growth standards). Growth trajectories clustering was conducted for each anthropometric index using k-means and a shape-respecting distance, accounting or not for birth size and/or GA-correction. We identified 3 trajectory patterns for each anthropometric index: increasing (High), stable (Middle) and decreasing (Low). Baseline centering resulted in pattern classification that considered early life growth traits. GA-correction increased the intercepts of preterm-born children trajectories, impacting their pattern classification. Incorporating shape-based clustering, baseline centering and GA-correction in growth patterns analysis improves the identification of subgroups meaningful for public health interventions.
Palavras-chave
Referências
  1. Adepeju M, 2021, J COMPUT SOC SCI, V4, P655, DOI 10.1007/s42001-021-00103-1
  2. [Anonymous], 2012, HDB RES METHODS STUD
  3. Barros AJD, 2006, REV SAUDE PUBL, V40, P402, DOI 10.1590/S0034-89102006000300007
  4. Blackmon LR, 2004, PEDIATRICS, V114, P1362, DOI 10.1542/peds.2004-1915
  5. Charrad M, 2014, J STAT SOFTW, V61, P1
  6. de Onis Mercedes, 2007, Bull World Health Organ, V85, P660
  7. Eze JI, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47339-6
  8. Frechet M. M., 1906, RENDICONTI CIRCOLO M, V22, P1, DOI [DOI 10.1007/BF03018603, 10.1007/BF03018603]
  9. Genolini C, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0150738
  10. Gong HJ, 2019, J BIOPHARM STAT, V29, P541, DOI 10.1080/10543406.2019.1572614
  11. Habicht J. P., 1974, B OFIC SANIT PANAM, V1974
  12. Massara P, 2021, INT J EPIDEMIOL, V50, P1000, DOI 10.1093/ije/dyab021
  13. MILLIGAN GW, 1986, MULTIVAR BEHAV RES, V21, P441, DOI 10.1207/s15327906mbr2104_5
  14. Nagin DS, 2014, ANN NUTR METAB, V65, P205, DOI 10.1159/000360229
  15. Perumal N, 2021, AM J EPIDEMIOL, V190, P477, DOI 10.1093/aje/kwaa169
  16. Perumal N, 2018, EMERG THEMES EPIDEMI, V15, DOI 10.1186/s12982-018-0070-1
  17. Perumal N, 2015, J NUTR, V145, P2429, DOI 10.3945/jn.115.214064
  18. Santos IS, 2014, INT J EPIDEMIOL, V43, P1437, DOI 10.1093/ije/dyu144
  19. Santos IS, 2011, INT J EPIDEMIOL, V40, P1461, DOI 10.1093/ije/dyq130
  20. Simon L, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0174645
  21. Song IG, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17093022
  22. Villar J, 2014, LANCET, V384, P857, DOI 10.1016/S0140-6736(14)60932-6
  23. Wang XLG, 2007, COMPUT STAT DATA AN, V52, P286, DOI 10.1016/j.csda.2006.12.016
  24. WHO Multicentre Growth Reference Study Group, 2006, ACTA PAEDIATR, V450, P76, DOI [DOI 10.1080/08035320500495548, DOI 10.1111/J.1651-2227.2006.TB02378.X, 10.1111/j.1651-2227.2006.tb02378.x]
  25. World Health Organization, 1995, REPORT WHO EXPERT CO, V854