Losartan Inhibition of Myofibroblast Generation and Late Haze (Scarring Fibrosis) After PRK in Rabbits

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SLACK INC
Autores
SAMPAIO, Lycia Pedral
HILGERT, Guilherme S. L.
SHIJU, Thomas Michael
WILSON, Steven E.
Citação
JOURNAL OF REFRACTIVE SURGERY, v.38, n.12, p.820-829, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
PURPOSE: To study the effect of topical losartan compared to vehicle on the generation of myofibroblasts and development of late haze scarring fibrosis after photorefractive keratectomy (PRK) in rabbits. METHODS: Twelve rabbits had-9.00 diopter (D) PRK in one eye followed by 50 mu L of topical 0.2 mg/mL losartan or 50 mu L of vehicle six times per day for 1 month. Standardized slit lamp photographs were obtained prior to death. Duplex immunohistochemistry was performed on cryofixed corneas for myofibroblast marker alpha-smooth muscle actin (a-SMA) and keratocyte marker keratocan or collagen type IV and transforming growth factor (TGF)-I31. ImageJ software (National Institutes of Health) was used for quantitation. RESULTS: Topical losartan compared to vehicle significantly decreased corneal opacity (P = .04) and anterior stromal myofibroblast generation (P = .01) at 1 month after PRK. Topical losartan compared to vehicle also decreased anterior stromal non-basement membrane collagen type IV at 1 month after PRK (P = .004). CONCLUSIONS: Topical angiotensin converting enzyme II receptor inhibitor losartan, a known inhibitor of TGF-I3 signaling, decreased late haze scarring fibrosis and myofibroblast generation after-9.00 D PRK in rabbits compared to vehicle. It also decreases TGF-I3-modulated, corneal fibroblast-produced, non-basement membrane stromal collagen type IV-likely also through inhibition of TGF-I3 signaling.[J Refract Surg. 2022;38(12):820-829.]
Palavras-chave
Referências
  1. Abu El-Asrar AM, 1998, EYE, V12, P453, DOI 10.1038/eye.1998.104
  2. Cohn RD, 2007, NAT MED, V13, P204, DOI 10.1038/nm1536
  3. de Oliveira RC, 2022, J REFRACT SURG, V38, P50, DOI 10.3928/1081597X-20211007-02
  4. de Oliveira RC, 2021, EXP EYE RES, V202, DOI 10.1016/j.exer.2020.108325
  5. de Oliveira RC, 2020, EXP EYE RES, V200, DOI 10.1016/j.exer.2020.108218
  6. de Oliveira RC, 2020, INVEST OPHTH VIS SCI, V61, DOI 10.1167/iovs.61.2.28
  7. Geirsson A, 2012, CIRCULATION, V126, pS189, DOI 10.1161/CIRCULATIONAHA.111.082610
  8. Jester JV, 1997, CORNEA, V16, P177
  9. Jester JV, 1999, J CELL SCI, V112, P613
  10. Kaiserman I, 2017, CORNEA, V36, P961, DOI 10.1097/ICO.0000000000001231
  11. Kobayashi A, 2013, OPHTHALMOLOGY, V120, P923, DOI 10.1016/j.ophtha.2012.11.006
  12. Lassance L, 2018, EXP EYE RES, V170, P177, DOI 10.1016/j.exer.2018.02.018
  13. Lavoie P, 2005, J HYPERTENS, V23, P1895, DOI 10.1097/01.hjh.0000182521.44440.c5
  14. Lim DS, 2001, CIRCULATION, V103, P789, DOI 10.1161/01.CIR.103.6.789
  15. Lipshitz I, 1997, OPHTHALMOLOGY, V104, P369, DOI 10.1016/S0161-6420(97)30306-6
  16. Majmuder PA, 2000, OPHTHALMOLOGY, V107, P89, DOI 10.1016/S0161-6420(99)00019-6
  17. Marino GK, 2017, J REFRACT SURG, V33, P337, DOI 10.3928/1081597X-20170126-02
  18. Medeiros CS, 2019, INVEST OPHTH VIS SCI, V60, P1010, DOI 10.1167/iovs.18-26451
  19. National Institute of Diabetes and Digestive and Kidney Diseases, 2012, NATL I DIABETES DIGE
  20. Park JK, 2012, CELL TRANSPLANT, V21, P2407, DOI 10.3727/096368912X637055
  21. Raviv T, 2000, J CATARACT REFR SURG, V26, P1105, DOI 10.1016/S0886-3350(00)00625-8
  22. Sampaio LP, 2022, TRANSL VIS SCI TECHN, V11, DOI 10.1167/tvst.11.7.9
  23. Sampaio LP, 2022, EXP EYE RES, V216, DOI 10.1016/j.exer.2022.108940
  24. Sampaio LP, 2021, EXP EYE RES, V213, DOI 10.1016/j.exer.2021.108803
  25. Schlunck G, 2016, EXP EYE RES, V142, P76, DOI 10.1016/j.exer.2015.03.021
  26. Torricelli AAM, 2013, INVEST OPHTH VIS SCI, V54, P4026, DOI 10.1167/iovs.13-12106
  27. Waldrop WH, 2020, CORNEA, V39, P1227, DOI 10.1097/ICO.0000000000002416
  28. Wilson SE, 2007, EXP EYE RES, V85, P305, DOI 10.1016/j.exer.2007.06.009
  29. Wilson SE, 2022, MATRIX BIOL, V109, DOI 10.1016/j.matbio.2022.04.002
  30. Wilson SE, 2022, CELL MOL LIFE SCI, V79, DOI 10.1007/s00018-022-04184-7
  31. Wilson SE, 2022, INVEST OPHTH VIS SCI, V63, DOI 10.1167/iovs.63.1.22
  32. Wilson SE, 2021, EXP EYE RES, V207, DOI 10.1016/j.exer.2021.108594
  33. Wilson SE, 2020, EXP EYE RES, V201, DOI 10.1016/j.exer.2020.108272
  34. Wylie-Sears J, 2014, BIOCHEM BIOPH RES CO, V446, P870, DOI 10.1016/j.bbrc.2014.03.014