Autophagy Signaling in Skeletal Muscle of Infarcted Rats

Carregando...
Imagem de Miniatura
Citações na Scopus
44
Tipo de produção
article
Data de publicação
2014
Editora
PUBLIC LIBRARY SCIENCE
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
JANNIG, Paulo R.
MOREIRA, Jose B. N.
BECHARA, Luiz R. G.
BOZI, Luiz H. M.
BACURAU, Aline V.
MONTEIRO, Alex W. A.
WISLOFF, Ulrik
BRUM, Patricia C.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
PLOS ONE, v.9, n.1, article ID e85820, 12p, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Heart failure (HF)-induced skeletal muscle atrophy is often associated to exercise intolerance and poor prognosis. Better understanding of the molecular mechanisms underlying HF-induced muscle atrophy may contribute to the development of pharmacological strategies to prevent or treat such condition. It has been shown that autophagy-lysosome system is an important mechanism for maintenance of muscle mass. However, its role in HF-induced myopathy has not been addressed yet. Therefore, the aim of the present study was to evaluate autophagy signaling in myocardial infarction (MI)-induced muscle atrophy in rats. Methods/Principal Findings: Wistar rats underwent MI or Sham surgeries, and after 12 weeks were submitted to echocardiography, exercise tolerance and histology evaluations. Cathepsin L activity and expression of autophagy-related genes and proteins were assessed in soleus and plantaris muscles by fluorimetric assay, qRT-PCR and immunoblotting, respectively. MI rats displayed exercise intolerance, left ventricular dysfunction and dilation, thereby suggesting the presence of HF. The key findings of the present study were: a) upregulation of autophagy-related genes (GABARAPL1, ATG7, BNIP3, CTSL1 and LAMP2) was observed only in plantaris while muscle atrophy was observed in both soleus and plantaris muscles, and b) Cathepsin L activity, Bnip3 and Fis1 protein levels, and levels of lipid hydroperoxides were increased specifically in plantaris muscle of MI rats. Conclusions: Altogether our results provide evidence for autophagy signaling regulation in HF-induced plantaris atrophy but not soleus atrophy. Therefore, autophagy-lysosome system is differentially regulated in atrophic muscles comprising different fiber-types and metabolic characteristics.
Palavras-chave
Referências
  1. Anker SD, 1997, LANCET, V349, P1050, DOI 10.1016/S0140-6736(96)07015-8
  2. Attaix Didier, 2008, Curr Opin Support Palliat Care, V2, P262, DOI 10.1097/SPC.0b013e3283196ac2
  3. Bacurau AVN, 2009, J APPL PHYSIOL, V106, P1631, DOI 10.1152/japplphysiol.91067.2008
  4. Bechet D, 2005, INT J BIOCHEM CELL B, V37, P2098, DOI 10.1016/j.biocel.2005.02.029
  5. BROOKE MH, 1970, J HISTOCHEM CYTOCHEM, V18, P670
  6. Bueno CR, 2010, J APPL PHYSIOL, V109, P702, DOI 10.1152/japplphysiol.00281.2010
  7. Cohen S, 2009, J CELL BIOL, V185, P1083, DOI 10.1083/jcb.200901052
  8. Cunha TF, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041701
  9. Deval C, 2001, BIOCHEM J, V360, P143, DOI 10.1042/0264-6021:3600143
  10. Ferreira JCB, 2007, CLIN EXP PHARMACOL P, V34, P760, DOI 10.1111/j.1440-1681.2007.04635.x
  11. Ferreira JCB, 2008, AM J PHYSIOL-REG I, V294, pR26, DOI 10.1152/ajpregu.00424.2007
  12. FRANCIOSA JA, 1981, AM J CARDIOL, V47, P33, DOI 10.1016/0002-9149(81)90286-1
  13. Glass DJ, 2003, NAT CELL BIOL, V5, P87, DOI 10.1038/ncb0203-87
  14. Go AS, 2013, CIRCULATION, V127, pE6, DOI 10.1161/CIR.0b013e31828124ad
  15. Harrington D, 1997, J AM COLL CARDIOL, V30, P1758, DOI 10.1016/S0735-1097(97)00381-1
  16. Hunt SA, 2005, CIRCULATION, V112, pE154, DOI 10.1161/CIRCULATIONHA.105.167586
  17. JOHNS TNP, 1954, ANN SURG, V140, P675, DOI 10.1097/00000658-195411000-00006
  18. JONDEAU G, 1992, CIRCULATION, V86, P1351
  19. Klionsky DJ, 2012, AUTOPHAGY, V8, P445, DOI 10.4161/auto.19496
  20. Krum H, 2009, LANCET, V373, P941, DOI 10.1016/S0140-6736(09)60236-1
  21. Lecker SH, 2004, FASEB J, V18, P39, DOI 10.1096/fj.03-0610com
  22. Li P, 2007, AM J PATHOL, V170, P599, DOI 10.2353/ajpath.2007.060505
  23. Lokireddy S, 2012, CELL METAB, V16, P613, DOI 10.1016/j.cmet.2012.10.005
  24. Mammucari C, 2007, CELL METAB, V6, P458, DOI 10.1016/j.cmet.2007.11.001
  25. Mendes S, 2011, GLOBAL ATLAS CARDIOV
  26. Middlekauff HR, 2010, CIRC-HEART FAIL, V3, P537, DOI 10.1161/CIRCHEARTFAILURE.109.903773
  27. MINOTTI JR, 1993, J APPL PHYSIOL, V75, P373
  28. Mizushima N, 2004, MOL BIOL CELL, V15, P1101, DOI 10.1091/mbc.E03-09-0704
  29. Mizushima N, 2011, CELL, V147, P728, DOI 10.1016/j.cell.2011.10.026
  30. Moreira JBN, 2013, J APPL PHYSIOL, V114, P1029, DOI 10.1152/japplphysiol.00760.2012
  31. Musaro A, 2010, CURR OPIN CLIN NUTR, V13, P236, DOI 10.1097/MCO.0b013e3283368188
  32. NOUROOZZADEH J, 1994, ANAL BIOCHEM, V220, P403, DOI 10.1006/abio.1994.1357
  33. Novak I, 2010, EMBO REP, V11, P45, DOI 10.1038/embor.2009.256
  34. Ogata T, 2010, BIOCHEM BIOPH RES CO, V394, P136, DOI 10.1016/j.bbrc.2010.02.130
  35. O'Leary MF, 2013, AM J PHYSIOL-CELL PH, V304, pC422, DOI 10.1152/ajpcell.00240.2012
  36. Picard MH, 2011, J AM SOC ECHOCARDIOG, V24, P1, DOI 10.1016/j.echo.2010.11.006
  37. Romanello V, 2010, EMBO J, V29, P1774, DOI 10.1038/emboj.2010.60
  38. Romero-Calvo I, 2010, ANAL BIOCHEM, V401, P318, DOI 10.1016/j.ab.2010.02.036
  39. Rommel C, 2001, NAT CELL BIOL, V3, P1009, DOI 10.1038/ncb1101-1009
  40. Sandri M, 2008, PHYSIOLOGY, V23, P160, DOI 10.1152/physiol.00041.2007
  41. Solomon V, 1996, J BIOL CHEM, V271, P26690
  42. Thomas RL, 2011, AUTOPHAGY, V7, P775, DOI 10.4161/auto.7.7.15536
  43. Twig G, 2008, EMBO J, V27, P433, DOI 10.1038/sj.emboj.7601963
  44. Youle RJ, 2011, NAT REV MOL CELL BIO, V12, P9, DOI 10.1038/nrm3028
  45. Zhao J, 2007, CELL METAB, V6, P472, DOI 10.1016/j.cmet.2007.11.004