Safety and immunogenicity of influenza A(H3N2) component vaccine in juvenile systemic lupus erythematosus

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Citação
ADVANCES IN RHEUMATOLOGY, v.63, n.1, article ID 55, 7p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction Seasonal influenza A (H3N2) virus is an important cause of morbidity and mortality in the last 50 years in population that is greater than the impact of H1N1. Data assessing immunogenicity and safety of this virus component in juvenile systemic lupus erythematosus (JSLE) is lacking in the literature.Objective To evaluate short-term immunogenicity and safety of influenza A/Singapore (H3N2) vaccine in JSLE.Methods 24 consecutive JSLE patients and 29 healthy controls (HC) were vaccinated with influenza A/Singapore/INFIMH-16-0019/2016(H3N2)-like virus. Influenza A (H3N2) seroprotection (SP), seroconversion (SC), geometric mean titers (GMT), factor increase in GMT (FI-GMT) titers were assessed before and 4 weeks post-vaccination. Disease activity, therapies and adverse events (AE) were also evaluated.Results JSLE patients and controls were comparable in current age [14.5 (10.1-18.3) vs. 14 (9-18.4) years, p = 0.448] and female sex [21 (87.5%) vs. 19 (65.5%), p = 0.108]. Before vaccination, JSLE and HC had comparable SP rates [22 (91.7%) vs. 25 (86.2%), p = 0.678] and GMT titers [102.3 (95% CI 75.0-139.4) vs. 109.6 (95% CI 68.2-176.2), p = 0.231]. At D30, JSLE and HC had similar immune response, since no differences were observed in SP [24 (100%) vs. 28 (96.6%), p = 1.000)], SC [4 (16.7%) vs. 9 (31.0%), p = 0.338), GMT [162.3 (132.9-198.3) vs. 208.1 (150.5-287.8), p = 0.143] and factor increase in GMT [1.6 (1.2-2.1) vs. 1.9 (1.4-2.5), p = 0.574]. SLEDAI-2K scores [2 (0-17) vs. 2 (0-17), p = 0.765] and therapies remained stable throughout the study. Further analysis of possible factors influencing vaccine immune response among JSLE patients demonstrated similar GMT between patients with SLEDAI < 4 compared to SLEDAI >= 4 (p = 0.713), as well as between patients with and without current use of prednisone (p = 0.420), azathioprine (p = 1.0), mycophenolate mofetil (p = 0.185), and methotrexate (p = 0.095). No serious AE were reported in both groups and most of them were asymptomatic (58.3% vs. 44.8%, p = 0.958). Local and systemic AE were alike in both groups (p > 0.05).Conclusion This is the first study that identified adequate immune protection against H3N2-influenza strain with additional vaccine-induced increment of immune response and an adequate safety profile in JSLE. (www.clinicaltrials.gov, NCT03540823).
Palavras-chave
Systemic lupus erythematosus, Influenza, Vaccine, Safety, Immunogenicity
Referências
  1. Abu-Shakra M, 2002, J RHEUMATOL, V29, P2555
  2. Aikawa NE, 2013, LUPUS, V22, P1394, DOI 10.1177/0961203313505926
  3. Aikawa NE, 2012, J RHEUMATOL, V39, P167, DOI 10.3899/jrheum.110721
  4. Belongia EA, 2019, CLIN INFECT DIS, V69, P1817, DOI 10.1093/cid/ciz411
  5. Belongia EA, 2016, LANCET INFECT DIS, V16, P942, DOI 10.1016/S1473-3099(16)00129-8
  6. Borba EF, 2012, RHEUMATOLOGY, V51, P1061, DOI 10.1093/rheumatology/ker427
  7. Campos LMA, 2013, ARTHRIT CARE RES, V65, P1121, DOI 10.1002/acr.21948
  8. Capao A, 2022, VIRUSES-BASEL, V14, DOI 10.3390/v14081692
  9. Chiu SS, 2018, J INFECT DIS, V217, P1365, DOI 10.1093/infdis/jiy027
  10. Formiga FFC, 2021, LUPUS, V30, P1915, DOI 10.1177/09612033211040371
  11. Del Porto F, 2006, VACCINE, V24, P3217, DOI 10.1016/j.vaccine.2006.01.028
  12. Dell'Era L, 2012, VACCINE, V30, P936, DOI 10.1016/j.vaccine.2011.11.083
  13. Furer V, 2020, ANN RHEUM DIS, V79, P39, DOI 10.1136/annrheumdis-2019-215882
  14. Gladman DD, 2002, J RHEUMATOL, V29, P288
  15. Guimaraes LE, 2015, PHARMACOL RES, V100, P190, DOI 10.1016/j.phrs.2015.08.003
  16. Heijstek MW, 2011, AUTOIMMUN REV, V11, P112, DOI 10.1016/j.autrev.2011.08.010
  17. Heijstek MW, 2011, ANN RHEUM DIS, V70, P1704, DOI 10.1136/ard.2011.150193
  18. Hochberg MC, 1997, ARTHRITIS RHEUM, V40, P1725, DOI 10.1002/art.1780400928
  19. Holvast A, 2006, ANN RHEUM DIS, V65, P913, DOI 10.1136/ard.2005.043943
  20. Jensen L, 2021, PEDIATR RHEUMATOL, V19, DOI 10.1186/s12969-021-00518-0
  21. Jester BJ, 2020, AM J PUBLIC HEALTH, V110, P669, DOI 10.2105/AJPH.2019.305557
  22. Kanakoudi-Tsakalidou F, 2001, CLIN EXP RHEUMATOL, V19, P589
  23. Kaufmann L, 2017, JOVE-J VIS EXP, DOI 10.3791/55833
  24. Korsun N, 2018, J MED MICROBIOL, V67, P228, DOI 10.1099/jmm.0.000668
  25. Mostafa A, 2018, TRENDS MICROBIOL, V26, P87, DOI 10.1016/j.tim.2017.12.003
  26. Munoz FM, 2019, VACCINE, V37, P5161, DOI 10.1016/j.vaccine.2019.07.085
  27. Murdaca G, 2016, HUM VACC IMMUNOTHER, V12, P632, DOI 10.1080/21645515.2015.1107685
  28. Murdaca G, 2014, AUTOIMMUN REV, V13, P75, DOI 10.1016/j.autrev.2013.07.007
  29. Ogimi C, 2011, PEDIATR INFECT DIS J, V30, P208, DOI 10.1097/INF.0b013e3181f7ce44
  30. Pasoto SG, 2014, CURR OPIN RHEUMATOL, V26, P528, DOI 10.1097/BOR.0000000000000084
  31. Silva CA, 2013, NAT REV RHEUMATOL, V9, P532, DOI 10.1038/nrrheum.2013.95
  32. Silva CA, 2016, EXPERT REV CLIN IMMU, V12, P301, DOI 10.1586/1744666X.2016.1123621
  33. Silvennoinen H, 2015, PEDIATR INFECT DIS J, V34, P1081, DOI 10.1097/INF.0000000000000814
  34. Vemula SV, 2016, VIRUSES-BASEL, V8, DOI 10.3390/v8040096
  35. Yang JR, 2018, J CLIN VIROL, V99-100, P15, DOI 10.1016/j.jcv.2017.12.012