Gellan gum spongy-like hydrogel-based dual antibiotic therapy for infected diabetic wounds

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
MENDES, Ana Isabel
FRAGA, Alexandra Gabriel
PEIXOTO, Maria Joao
AROSO, Ivo
MARQUES, Alexandra Pinto
PEDROSA, Jorge
Citação
BIOENGINEERING & TRANSLATIONAL MEDICINE, v.8, n.3, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Diabetic foot infection (DFI) is an important cause of morbidity and mortality. Antibiotics are fundamental for treating DFI, although bacterial biofilm formation and associated pathophysiology can reduce their effectiveness. Additionally, antibiotics are often associated with adverse reactions. Hence, improved antibiotic therapies are required for safer and effective DFI management. On this regard, drug delivery systems (DDSs) constitute a promising strategy. We propose a gellan gum (GG)-based spongy-like hydrogel as a topical and controlled DDS of vancomycin and clindamycin, for an improved dual antibiotic therapy against methicillin-resistant Staphylococcus aureus (MRSA) in DFI. The developed DDS presents suitable features for topical application, while promoting the controlled release of both antibiotics, resulting in a significant reduction of in vitro antibiotic-associated cytotoxicity without compromising antibacterial activity. The therapeutic potential of this DDS was further corroborated in vivo, in a diabetic mouse model of MRSA-infected wounds. A single DDS administration allowed a significant bacterial burden reduction in a short period of time, without exacerbating host inflammatory response. Taken together, these results suggest that the proposed DDS represents a promising strategy for the topical treatment of DFI, potentially overcoming limitations associated with systemic antibiotic administration and minimizing the frequency of administration.
Palavras-chave
antibiotics, diabetic ulcers, hydrogel, MRSA infection, topical delivery
Referências
  1. Ahmad S, 2019, INT J BIOL MACROMOL, V136, P870, DOI 10.1016/j.ijbiomac.2019.06.113
  2. Anjum A, 2018, AAPS PHARMSCITECH, V19, P1219, DOI 10.1208/s12249-017-0937-4
  3. [Anonymous], 1985, WHO TECH REP SER, P1
  4. [Anonymous], 2008, SMALL ANIMAL CLIN PH
  5. Armstrong DG, 2017, NEW ENGL J MED, V376, P2367, DOI 10.1056/NEJMra1615439
  6. Atkin L, 2019, J WOUND CARE, V28, pS5, DOI 10.12968/jowc.2019.28.Sup3a.S1
  7. Attinger C, 2012, ADV WOUND CARE, V1, P127, DOI 10.1089/wound.2011.0333
  8. Barwell ND, 2017, INT J CLIN PRACT, V71, DOI 10.1111/ijcp.13006
  9. Bera H, 2018, INT J BIOL MACROMOL, V107, P604, DOI 10.1016/j.ijbiomac.2017.09.027
  10. Berti FV, 2017, TISSUE ENG PT A, V23, P968, DOI [10.1089/ten.tea.2016.0430, 10.1089/ten.TEA.2016.0430]
  11. Carmona-Moran CA, 2016, INT J PHARMACEUT, V509, P465, DOI 10.1016/j.ijpharm.2016.05.062
  12. Cavanagh PR, 2005, LANCET, V366, P1725, DOI 10.1016/S0140-6736(05)67699-4
  13. Cerqueira MT, 2014, ACS APPL MATER INTER, V6, P19668, DOI 10.1021/am504520j
  14. Citron DM, 2007, J CLIN MICROBIOL, V45, P2819, DOI 10.1128/JCM.00551-07
  15. CLSI (Clinical and Laboratory Standards Institute), 2021, CLSI supplement M100, V31st, P352
  16. Cong YG, 2020, J ADV RES, V21, P169, DOI 10.1016/j.jare.2019.10.005
  17. Crouzet J, 2011, INT J INFECT DIS, V15, pE601, DOI 10.1016/j.ijid.2011.05.003
  18. da Silva LP, 2016, ACS APPL MATER INTER, V8, P33464, DOI 10.1021/acsami.6b11684
  19. da Silva LP, 2014, ACTA BIOMATER, V10, P4787, DOI 10.1016/j.actbio.2014.07.009
  20. da Silva LP, 2017, J INVEST DERMATOL, V137, P1541, DOI 10.1016/j.jid.2017.02.976
  21. Dhanka M, 2018, INT J BIOL MACROMOL, V110, P346, DOI 10.1016/j.ijbiomac.2017.12.026
  22. Dimitrovska I, 2020, CELLULOSE, V27, P7109, DOI 10.1007/s10570-020-03283-7
  23. Dorati R, 2016, MAT SCI ENG C-MATER, V58, P909, DOI 10.1016/j.msec.2015.09.053
  24. Dutescu IA, 2021, INFECT DRUG RESIST, V14, P415, DOI 10.2147/IDR.S287792
  25. Dzikowski M, 2017, INT J PHARMACEUT, V532, P802, DOI 10.1016/j.ijpharm.2017.08.117
  26. Eleftheriadou L, 2010, DRUGS, V70, P1785, DOI 10.2165/11538070-000000000-00000
  27. Falcone M, 2021, J GLOB ANTIMICROB RE, V26, P140, DOI 10.1016/j.jgar.2021.05.010
  28. Ferris CJ, 2013, SOFT MATTER, V9, P3705, DOI 10.1039/c3sm27389j
  29. Friedman ND, 2016, CLIN MICROBIOL INFEC, V22, P416, DOI 10.1016/j.cmi.2015.12.002
  30. Furman Brian L, 2021, Curr Protoc, V1, pe78, DOI 10.1002/cpz1.78
  31. Gustafson CT, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146401
  32. Hasan N, 2019, PHARMACEUTICS, V11, DOI 10.3390/pharmaceutics11050236
  33. Hu SX, 2019, INT J BIOL MACROMOL, V123, P1320, DOI 10.1016/j.ijbiomac.2018.09.122
  34. ISO, 2009, ISO 10993-5: 2009
  35. Kalita H, 2017, RSC ADV, V7, P32637, DOI 10.1039/c7ra04888b
  36. Kalita S, 2015, INT J NANOMED, V10, P2971, DOI 10.2147/IJN.S75023
  37. Kaur P, 2019, INT J PHARMACEUT, V572, DOI 10.1016/j.ijpharm.2019.118779
  38. Kim MH, 2016, IEEE T NANOBIOSCI, V15, P294, DOI 10.1109/TNB.2016.2527600
  39. Kumar S, 2021, ACS APPL MATER INTER, V13, P44041, DOI 10.1021/acsami.1c12265
  40. Leaper D, 2015, BRIT J DERMATOL, V173, P351, DOI 10.1111/bjd.13677
  41. Li AQ, 2021, DRUG DES DEV THER, V15, P3937, DOI 10.2147/DDDT.S328722
  42. Liang YP, 2022, ACS NANO, V16, P3194, DOI 10.1021/acsnano.1c11040
  43. Lipsky BA, 2016, DIABETES-METAB RES, V32, P45, DOI 10.1002/dmrr.2699
  44. Lipsky BA, 2012, CLIN INFECT DIS, V54, P1679, DOI [10.1093/cid/cis460, 10.1093/cid/cis346]
  45. Mahdi MH, 2016, INT J PHARMACEUT, V515, P535, DOI 10.1016/j.ijpharm.2016.10.048
  46. Malone M., 2017, DIABETES-METAB RES, V33, P7
  47. Maver T, 2021, MATERIALS, V14, DOI 10.3390/ma14061464
  48. Mendes AI, 2022, BMC RES NOTES, V15, DOI 10.1186/s13104-022-06170-5
  49. Mohamed AI, 2017, PHARMACEUTICS, V9, DOI 10.3390/pharmaceutics9010007
  50. Morley R, 2022, J FOOT ANKLE SURG, V61, P239, DOI 10.1053/j.jfas.2021.07.014
  51. Mottola C, 2016, BMC MICROBIOL, V16, DOI 10.1186/s12866-016-0737-0
  52. Murphy PB., 2022, CLINDAMYCIN
  53. Muthukumar T, 2019, MOLECULES, V24, DOI 10.3390/molecules24244514
  54. Nair AB, 2019, POLYMERS-BASEL, V11, DOI 10.3390/polym11101699
  55. Olid AS., 2015, COCHRANE DB SYST REV, V9, P113
  56. Oliveira JT, 2010, J BIOMED MATER RES A, V93A, P852, DOI 10.1002/jbm.a.32574
  57. Patel S., 2022, VANCOMYCIN
  58. Patel S, 2019, BIOMED PHARMACOTHER, V112, DOI 10.1016/j.biopha.2019.108615
  59. Pletz MW, 2017, LANCET INFECT DIS, V17, P677, DOI 10.1016/S1473-3099(17)30233-5
  60. Posadowska U, 2016, J MATER SCI-MATER M, V27, DOI 10.1007/s10856-015-5604-2
  61. Prezotti FG, 2014, CARBOHYD POLYM, V113, P286, DOI 10.1016/j.carbpol.2014.07.021
  62. Roy DC, 2015, ADV WOUND CARE, V4, P457, DOI 10.1089/wound.2014.0576
  63. Rufato KB, 2021, INT J BIOL MACROMOL, V183, P727, DOI 10.1016/j.ijbiomac.2021.04.138
  64. Salunke SR, 2016, INT J BIOL MACROMOL, V87, P41, DOI 10.1016/j.ijbiomac.2016.02.044
  65. Schultz G, 2017, WOUND REPAIR REGEN, V25, P744, DOI 10.1111/wrr.12590
  66. Silva V, 2020, EUR J CLIN MICROBIOL, V39, P179, DOI 10.1007/s10096-019-03709-6
  67. SMILACK JD, 1991, MAYO CLIN PROC, V66, P1270, DOI 10.1016/S0025-6196(12)62479-3
  68. Srisuk P, 2018, ACS BIOMATER SCI ENG, V4, P1779, DOI 10.1021/acsbiomaterials.7b00917
  69. Sun H, 2022, DIABETES RES CLIN PR, V183, DOI 10.1016/j.diabres.2021.109119
  70. Versey Z, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.648554
  71. Wang B, 2019, POWDER TECHNOL, V358, P79, DOI 10.1016/j.powtec.2018.07.084
  72. WATANAKUNAKORN C, 1984, J ANTIMICROB CHEMOTH, V14, P7, DOI 10.1093/jac/14.suppl_D.7
  73. Xiong MH, 2014, ADV DRUG DELIVER REV, V78, P63, DOI 10.1016/j.addr.2014.02.002
  74. Zakeri-Milani P, 2013, COLLOID SURFACE B, V103, P174, DOI 10.1016/j.colsurfb.2012.10.021