Effect of Roux-en-Y Gastric Bypass on circulating oxylipin profile in women with obesity and type 2 diabetes

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Citação
PROSTAGLANDINS LEUKOTRIENES AND ESSENTIAL FATTY ACIDS, v.200, article ID 102605, 5p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background & Aims: Chronic inflammation associated with obesity directly contributes to metabolic comor-bidities, including type 2 diabetes (T2D). Roux-en-Y gastric bypass (RYGB) is a highly effective treatment for obesity-associated T2D. We investigated the effect of RYGB on the circulating profile of oxylipins derived from arachidonic (ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids as a potential mechanism un-derlying the metabolic benefits of the surgery. Methods: Plasma samples were collected from 28 women with obesity and T2D before and 3 months after RYGB. Circulating levels of oxylipins and their precursors, along with biochemical markers of glucose homeostasis, were evaluated using untargeted mass spectrometry and routine biochemical techniques, respectively. Results: No significant changes were observed in the levels of oxylipins derived from EPA and DHA. However, there was an increase in ARA and its derived oxylipins, TXB2 (an inert derivative of TXA2) and PGD2 (Wilcoxon, p <= 0.05). Positive correlations were observed between hemoglobin A1c levels and TXB2 as well as ARA levels (Spearman, p <= 0.05). Conclusions: Our data suggest that the anti-inflammatory oxylipins derived from EPA and DHA may not be involved in the metabolic benefits associated with RYGB. However, the findings indicate that the pro-inflammatory oxylipin TXA2 and its precursor ARA may negatively impact glucose homeostasis both before and after RYGB.
Palavras-chave
Fatty acids, Obesity, Gastric bypass, Oxylipins, Inflammati
Referências
  1. Calder PC, 2013, P NUTR SOC, V72, P326, DOI 10.1017/S0029665113001031
  2. Carey AL, 2006, DIABETES, V55, P2688, DOI 10.2337/db05-1404
  3. Cron L, 2016, J EXP BIOL, V219, P259, DOI 10.1242/jeb.129213
  4. Denis GV, 2013, MOL ASPECTS MED, V34, P59, DOI 10.1016/j.mam.2012.10.004
  5. Fisk HL, 2022, EBIOMEDICINE, V77, DOI 10.1016/j.ebiom.2022.103909
  6. Holdstock C, 2005, INT J OBESITY, V29, P1275, DOI 10.1038/sj.ijo.0803000
  7. Illán-Gómez F, 2012, OBES SURG, V22, P950, DOI 10.1007/s11695-012-0643-y
  8. Joo M, 2012, MEDIAT INFLAMM, V2012, DOI 10.1155/2012/503128
  9. Jorgensen NB, 2012, AM J PHYSIOL-ENDOC M, V303, pE122, DOI 10.1152/ajpendo.00073.2012
  10. Kraakman MJ, 2013, DIABETES OBES METAB, V15, P170, DOI 10.1111/dom.12170
  11. Liakh I, 2022, INT J OBESITY, V46, P408, DOI 10.1038/s41366-021-01013-y
  12. Liakh I, 2020, MOLECULES, V25, DOI 10.3390/molecules25020349
  13. Machado NM, 2020, JPEN-PARENTER ENTER, V44, P1417, DOI 10.1002/jpen.1960
  14. Manca C, 2021, NUTRIENTS, V13, DOI 10.3390/nu13124340
  15. Matthews VB, 2010, DIABETOLOGIA, V53, P2431, DOI 10.1007/s00125-010-1865-y
  16. Pawelzik SC, 2019, PROSTAG OTH LIPID M, V145, DOI 10.1016/j.prostaglandins.2019.106361
  17. Pournaras DJ, 2010, ANN SURG, V252, P966, DOI 10.1097/SLA.0b013e3181efc49a
  18. Ricote M, 1998, NATURE, V391, P79, DOI 10.1038/34178
  19. Sala P, 2022, NUTRITION, V99-100, DOI 10.1016/j.nut.2022.111631
  20. Sala P, 2016, J INT MED RES, V44, P1359, DOI 10.1177/0300060516667862
  21. Scheller J, 2011, BBA-MOL CELL RES, V1813, P878, DOI 10.1016/j.bbamcr.2011.01.034
  22. Serhan C.N., 2014, Am. J. Physiol., V307, pC279
  23. Serhan C.N., 2008, J. Intern. Med., V263, P128
  24. Tans R, 2020, PROSTAG LEUKOTR ESS, V160, DOI 10.1016/j.plefa.2020.102157
  25. Truchan NA, 2021, ACS PHARMACOL TRANSL, V4, P1338, DOI 10.1021/acsptsci.1c00045
  26. Tuomisto K, 2022, BMJ OPEN DIAB RES CA, V10, DOI 10.1136/bmjdrc-2021-002519