Activation of platelet-activating factor receptor exacerbates renal inflammation and promotes fibrosis

Carregando...
Imagem de Miniatura
Citações na Scopus
30
Tipo de produção
article
Data de publicação
2014
Editora
NATURE PUBLISHING GROUP
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
CORREA-COSTA, Matheus
ANDRADE-OLIVEIRA, Vinicius
BRAGA, Tarcio T.
CASTOLDI, Angela
AGUIAR, Cristhiane F.
ORIGASSA, Clarice S. T.
RODAS, Andrea C. D.
HIYANE, Meire I.
RIOS, Francisco J. O.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
LABORATORY INVESTIGATION, v.94, n.4, p.455-466, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Platelet-activating factor (PAF) is a lipid mediator with important pro-inflammatory effects, being synthesized by several cell types including kidney cells. Although there is evidence of its involvement in acute renal dysfunction, its role in progressive kidney injury is not completely known. In the present study, we investigated the role of PAF receptor (PAFR) in an experimental model of chronic renal disease. Wild-type (WT) and PAFR knockout (KO) mice underwent unilateral ureter obstruction (UUO), and at kill time, urine and kidney tissue was collected. PAFR KO animals compared with WT mice present: (a) less renal dysfunction, evaluated by urine protein/creatinine ratio; (b) less fibrosis evaluated by collagen deposition, type I collagen, Lysyl Oxidase-1 (LOX-1) and transforming growth factor beta (TGF-beta) gene expression, and higher expression of bone morphogenetic protein 7 (BMP-7) (3.3-fold lower TGF-beta/BMP-7 ratio); (c) downregulation of extracellular matrix (ECM) and adhesion molecule-related machinery genes; and (d) lower levels of pro-inflammatory cytokines. These indicate that PAFR engagement by PAF or PAF-like molecules generated during UUO potentiates renal dysfunction and fibrosis and might promote epithelial-to-mesenchymal transition (EMT). Also, early blockade of PAFR after UUO leads to a protective effect, with less fibrosis deposition. In conclusion, PAFR signaling contributes to a pro-inflammatory environment in the model of obstructive nephropathy, favoring the fibrotic process, which lately will generate renal dysfunction and progressive organ failure.
Palavras-chave
chronic kidney disease, platelet activating factor receptor, renal fibrosis, renal inflammation
Referências
  1. Bascands JL, 2005, KIDNEY INT, V68, P925, DOI 10.1111/j.1523-1755.2005.00486.x
  2. Bataller R, 2005, J CLIN INVEST, V115, P209, DOI 10.1172/JCI200524282
  3. Bedi Surmeet, 2008, Transplant Rev (Orlando), V22, P1, DOI 10.1016/j.trre.2007.09.004
  4. Bennett SAL, 1998, CELL DEATH DIFFER, V5, P867, DOI 10.1038/sj.cdd.4400434
  5. Braga TT, 2012, MOL MED, V18, P1231, DOI 10.2119/molmed.2012.00131
  6. CAMUSSI G, 1984, KIDNEY INT, V25, P73, DOI 10.1038/ki.1984.10
  7. Castor MGM, 2012, J LEUKOCYTE BIOL, V91, P629, DOI 10.1189/jlb.1111561
  8. Chandrasekaran K, 2012, KIDNEY INT, V81, P617, DOI 10.1038/ki.2011.448
  9. Chen CH, 2003, CIRCULATION, V107, P2102, DOI 10.1161/01.CIR.0000065220.70220.F7
  10. Chen J, 1997, J PHARMACOL EXP THER, V280, P1219
  11. Chen ZG, 2003, CELL SIGNAL, V15, P843, DOI 10.1016/S0898-6568(03)00056-1
  12. Chung ACK, 2009, NEPHROL DIAL TRANSPL, V24, P1443, DOI 10.1093/ndt/gfn699
  13. Coresh J, 2007, JAMA-J AM MED ASSOC, V298, P2038, DOI 10.1001/jama.298.17.2038
  14. Correa-Costa M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014298
  15. Correa-Costa M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0029004
  16. Cravedi P, 2012, NAT REV NEPHROL, V8, P301, DOI 10.1038/nrneph.2012.42
  17. de Lima AO, 2012, NEPHROL DIAL TRANSPL, V27, P135, DOI 10.1093/ndt/gfs063
  18. Doi K, 2006, AM J PATHOL, V168, P1413, DOI 10.2353/ajpath.2006.050634
  19. Dooley S, 2012, CELL TISSUE RES, V347, P245, DOI 10.1007/s00441-011-1246-y
  20. Duitman J, 2012, P NATL ACAD SCI USA, V109, P9113, DOI 10.1073/pnas.1202641109
  21. Fadok VA, 2001, J CLIN INVEST, V108, P957, DOI 10.1172/JCI14122
  22. Gonzalez-Ramos M, 2013, INT J BIOCHEM CELL B, V45, P232, DOI 10.1016/j.biocel.2012.10.001
  23. Gordon S, 2005, NAT REV IMMUNOL, V5, P953, DOI 10.1038/nri1733
  24. Hackett TL, 2012, CURR OPIN ALLERGY CL, V12, P53, DOI 10.1097/ACI.0b013e32834ec6eb
  25. Hasegawa S, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010467
  26. Hwang M, 2006, EXP MOL PATHOL, V81, P48, DOI 10.1016/j.yexmp.2005.11.005
  27. Ishii S, 1998, J EXP MED, V187, P1779, DOI 10.1084/jem.187.11.1779
  28. Ishii S, 2000, PROG LIPID RES, V39, P41, DOI 10.1016/S0163-7827(99)00016-8
  29. Ishii S, 2002, PROSTAG OTH LIPID M, V68-9, P599, DOI 10.1016/S0090-6980(02)00058-8
  30. Karantonis HC, 2010, DIGEST DIS SCI, V55, P276, DOI 10.1007/s10620-009-0745-0
  31. Kovacic JC, 2012, CIRCULATION, V125, P1795, DOI 10.1161/CIRCULATIONAHA.111.040352
  32. Lacerda-Queiroz N, 2012, AM J PATHOL, V180, P246, DOI 10.1016/j.ajpath.2011.09.038
  33. Lee SB, 2010, KIDNEY INT, V78, pS22, DOI 10.1038/ki.2010.418
  34. Liu YH, 2011, NAT REV NEPHROL, V7, P684, DOI 10.1038/nrneph.2011.149
  35. Lopez-Novoa JM, 2009, EMBO MOL MED, V1, P303, DOI 10.1002/emmm.200900043
  36. Lopez-Novoa JM, 1999, KIDNEY INT, V55, P1672, DOI 10.1046/j.1523-1755.1999.00450.x
  37. Lu J, 2007, PEDIATR RES, V61, P427, DOI 10.1203/pdr.0b013e3180332ca5
  38. Mariano F, 1999, NEPHROL DIAL TRANSPL, V14, P1150, DOI 10.1093/ndt/14.5.1150
  39. Perico N, 1997, J AM SOC NEPHROL, V8, P1391
  40. Prunotto M, 2012, NEPHROL DIAL TRANSPL, V27, P43, DOI 10.1093/ndt/gfs283
  41. Prunotto M, 2012, J PATHOL
  42. Ribeiro S, 2012, HEMODIAL INT, V16, P481, DOI 10.1111/j.1542-4758.2012.00687.x
  43. Rios FJO, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036632
  44. Rios FJO, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076893
  45. Rios FJ, 2013, MEDIAT INFLAMM, V2013
  46. Rodrigues DH, 2012, BRAIN RES, V1385, P298
  47. Rodriguez C, 2008, DRUG NEWS PERSPECT, V21, P218, DOI 10.1358/dnp.2008.21.4.1213351
  48. Ruiz-Ortega M, 1998, NEPHROL DIAL TRANSPL, V13, P886, DOI 10.1093/ndt/13.4.886
  49. Ryan SD, 2007, J NEUROCHEM, V103, P88, DOI 10.1111/j.1471-4159.2007.04740.x
  50. SCHLONDORFF D, 1986, AM J PHYSIOL, V251, pF1
  51. Sharif NA, 2010, J OCUL PHARMACOL TH, V26, P21, DOI 10.1089/jop.2009.0102
  52. Sharma J, 2012, AM J PHYSIOL-LUNG C, V302, pL47, DOI 10.1152/ajplung.00179.2011
  53. Sharma SK, 2010, AM J KIDNEY DIS, V56, P915, DOI 10.1053/j.ajkd.2010.06.022
  54. Sipos F, 2012, WORLD J GASTROENTERO, V18, P601, DOI 10.3748/wjg.v18.i7.601
  55. STRUTZ F, 1995, J CELL BIOL, V130, P393, DOI 10.1083/jcb.130.2.393
  56. THAISS F, 1994, J LAB CLIN MED, V124, P775
  57. Torras J, 1999, KIDNEY INT, V56, P1798, DOI 10.1046/j.1523-1755.1999.00724.x
  58. Venkatesha RT, 2004, J BIOL CHEM, V279, P44606, DOI 10.1074/jbc.M408035200
  59. Wang S, 2003, KIDNEY INT, V63, P2037, DOI 10.1046/j.1523-1755.2003.00035.x
  60. Zeisberg M, 2004, J MOL MED-JMM, V82, P175, DOI 10.1007/s00109-003-0517-9
  61. Zeisberg M, 2003, NAT MED, V9, P964, DOI 10.1038/nm888
  62. Zeisberg M, 2003, AM J PHYSIOL-RENAL, V285, pF1060, DOI 10.1152/ajprenal.00191.2002
  63. Zeisberg M, 2005, J BIOL CHEM, V280, P8094, DOI 10.1074/jbc.M413102200
  64. Zimmerman GA, 2002, CRIT CARE MED, V30, pS294, DOI 10.1097/00003246-200205001-00020