Lactate transporters and vascular factors in HPV-induced squamous cell carcinoma of the uterine cervix

Carregando...
Imagem de Miniatura
Citações na Scopus
28
Tipo de produção
article
Data de publicação
2014
Editora
BIOMED CENTRAL LTD
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
PINHEIRO, Celine
GARCIA, Eduardo A.
MORAIS-SANTOS, Filipa
SCAPULATEMPO-NETO, Cristovam
MAFRA, Allini
STEENBERGEN, Renske D. M.
BOCCARDO, Enrique
BALTAZAR, Fatima
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
BMC CANCER, v.14, article ID 751, 12p, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Tumour microenvironment is a fundamental aspect of tumour behaviour, modulating important events as cancer cell migration and invasion, as well as angiogenesis and metastisation. Among other microenvironment features, hypoxia and acidity play important roles in this modulation. As the metabolic reprogramming of cancer cells induces extracellular acidity, which in turn induces angiogenesis, and hypoxia induces both the metabolic reprogramming and angiogenesis, the present study aims to evaluate the immunohistochemical expression of a variety of metabolic and vascular markers as common targets of the hypoxic microenvironment in a series of cervical squamous cells carcinoma, as well as using an in vitro 3D culture model. Methods: Immunohistochemical expression of MCT1, MCT4, CD147, GLUT1 and CAIX was assessed in a series of 28 chronic cervicitis, 34 LSIL, 29 HSIL, 38 cases of squamous cells carcinoma (SCC), as well as in in vitro 3D culture of keratinocytes expressing HPV genes. Furthermore, VEGF family members' expression was assessed in the SCC cases. The expression profiles were associated with patients' clinicopathological parameters. Results: We found an increase of MCT4 expression along progression to malignancy in cervical samples. Also, MCT4 was associated with CD147 and CAIX expression. VEGF-A expression was more frequently found in cases without MCT1 expression. Both MCT4 and CD147 were more frequently expressed in younger patients at diagnosis while no associations were found between VEGF family and clinicopathological parameters. Finally, we show evidence for the upregulation of MCT4, as well as CD147 and CAIX, after HPV transfection. Conclusions: The results herein presented point at MCT4 as a promising therapeutic target in squamous cells carcinoma of the uterine cervix. Importantly, we show a possible association between lactate transport and angiogenesis, which should be further explored.
Palavras-chave
Angiogenesis, Cervical carcinoma, Hypoxia, Lymphangiogenesis, Metabolic reprogramming, Monocarboxylate transporter, VEGF
Referências
  1. Adams RH, 2007, NAT REV MOL CELL BIO, V8, P464, DOI 10.1038/nrm2183
  2. Airley R, 2001, CLIN CANCER RES, V7, P928
  3. Bayer C, 2011, INT J RADIAT ONCOL, V80, P965, DOI 10.1016/j.ijrobp.2011.02.049
  4. Byrne AM, 2005, J CELL MOL MED, V9, P777, DOI 10.1111/j.1582-4934.2005.tb00379.x
  5. Chen CH, 2001, J BIOL CHEM, V276, P9519, DOI 10.1074/jbc.M010144200
  6. Cheng YX, 2013, ANN DIAGN PATHOL, V17, P305, DOI 10.1016/j.anndiagpath.2012.12.002
  7. de Perez HF, 2010, PFLUGERS ARCH, V459, P509
  8. Folkman J, 2007, NAT REV DRUG DISCOV, V6, P273, DOI 10.1038/nrd2115
  9. Garcia EA, 2013, THYROID DISORDERS TH, V2, P123
  10. Gatenby RA, 2004, NAT REV CANCER, V4, P891, DOI 10.1038/nrc1478
  11. Gombos Z, 2005, CLIN CANCER RES, V11, P8364, DOI 10.1158/1078-0432.CCR-05-1238
  12. Goncharuk I. V., 2009, Experimental Oncology, V31, P179
  13. Gotanda Y, 2013, ANTICANCER RES, V33, P2941
  14. Halestrap AP, 2012, IUBMB LIFE, V64, P1, DOI 10.1002/iub.573
  15. Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013
  16. Helt AM, 2001, J VIROL, V75, P6737, DOI 10.1128/JVI.75.15.6737-6747.2001
  17. Hockel M, 2001, J NATL CANCER I, V93, P266, DOI 10.1093/jnci/93.4.266
  18. Hunt TK, 2007, ANTIOXID REDOX SIGN, V9, P1115, DOI 10.1089/ars.2007.1674
  19. Imtiyaz HZ, 2010, CURR TOP MICROBIOL, V345, P105, DOI 10.1007/82_2010_74
  20. Ju XZ, 2008, CLIN CANCER RES, V14, P494, DOI 10.1158/1078-0432.CCR-07-1072
  21. Kim BW, 2013, J TRANSL MED, V11, DOI 10.1186/1479-5876-11-185
  22. Kirkpatrick JP, 2008, BIOMARK INSIGHTS, V3, P45
  23. Kroemer G, 2008, CANCER CELL, V13, P472, DOI 10.1016/j.ccr.2008.05.005
  24. Lee JS, 2003, ANAL QUANT CYTOL, V25, P303
  25. Lunt SY, 2011, ANNU REV CELL DEV BI, V27, P441, DOI 10.1146/annurev-cellbio-092910-154237
  26. Markowska J, 2007, EUR J GYNAECOL ONCOL, V28, P386
  27. Martins SF, 2013, CANCER GENOM PROTEOM, V10, P55
  28. Mayer A, 2004, CANCER RES, V64, P5876, DOI 10.1158/0008-5472.CAN-03-3566
  29. Mayer A, 2005, CLIN CANCER RES, V11, P2768, DOI 10.1158/1078-0432.CCR-04-2344
  30. Mazurek S, 2001, BIOCHEM J, V356, P247, DOI 10.1042/0264-6021:3560247
  31. Mighty KK, 2014, RECENT RESULTS CANC, V193, P135, DOI 10.1007/978-3-642-38965-8_8
  32. Nakamura M, 2009, VIROLOGY, V387, P442, DOI 10.1016/j.virol.2009.02.036
  33. Niki T, 2000, CLIN CANCER RES, V6, P2431
  34. Pinheiro C, 2011, HISTOL HISTOPATHOL, V26, P1279
  35. Pinheiro C, 2009, EUR J CANCER, V45, P2418, DOI 10.1016/j.ejca.2009.06.018
  36. Pinheiro C, 2009, DIS MARKERS, V26, P97, DOI 10.3233/DMA-2009-0596
  37. Pinheiro C, 2008, INT J GYNECOL PATHOL, V27, P568, DOI 10.1097/PGP.0b013e31817b5b40
  38. Pinheiro C, 2010, J BIOMED BIOTECHNOL, V2010
  39. Pinheiro C, 2010, HISTOPATHOLOGY, V56, P860, DOI 10.1111/j.1365-2559.2010.03560.x
  40. Pinheiro C, 2008, VIRCHOWS ARCH, V452, P139, DOI 10.1007/s00428-007-0558-5
  41. Pouyssegur J, 2006, NATURE, V441, P437, DOI 10.1038/nature04871
  42. Queiros O, 2012, J BIOENERG BIOMEMBR, V44, P141, DOI 10.1007/s10863-012-9418-3
  43. Quennet V, 2006, RADIOTHER ONCOL, V81, P130, DOI 10.1016/j.radonc.2006.08.012
  44. Schiffman M, 2003, J NATL CANC I MONOGR, V31, P14
  45. Shi Xiaoyan, 2008, Int J Biomed Sci, V4, P58
  46. Smallbone K, 2005, J THEOR BIOL, V235, P476, DOI 10.1016/j.jtbi.2005.02.001
  47. Steenbergen RDM, 1998, J VIROL, V72, P749
  48. Stern R, 2002, EXP CELL RES, V276, P24, DOI 10.1006/excr.2002.5508
  49. Tang XD, 2007, CLIN CANCER RES, V13, P2568, DOI 10.1158/1078-0432.CCR-06-2704
  50. Tewari KS, 2014, NEW ENGL J MED, V370, P734, DOI 10.1056/NEJMoa1309748
  51. Ullah MS, 2006, J BIOL CHEM, V281, P9030, DOI 10.1074/jbc.M511397200
  52. Walenta S, 2000, CANCER RES, V60, P916
  53. Walenta S, 2002, BIOMOL ENG, V18, P249, DOI 10.1016/S1389-0344(01)00107-1
  54. Wilson MC, 2005, J BIOL CHEM, V280, P27213, DOI 10.1074/jbc.M411950200
  55. Woelber L, 2011, BMC CANCER, V11, DOI 10.1186/1471-2407-11-12
  56. Wykoff CC, 2000, CANCER RES, V60, P7075
  57. Xu L, 2002, J BIOL CHEM, V277, P11368, DOI 10.1074/jbc.M108347200
  58. Yamagata M, 1998, BRIT J CANCER, V77, P1726, DOI 10.1038/bjc.1998.289
  59. Yamazaki Y, 2006, MOL DIVERS, V10, P515, DOI 10.1007/s11030-006-9027-3