NADPH oxidase hyperactivity induces plantaris atrophy in heart failure rats

Carregando...
Imagem de Miniatura
Citações na Scopus
54
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Autores
BECHARA, Luiz R. G.
MOREIRA, Jose B. N.
JANNIG, Paulo R.
VOLTARELLI, Vanessa A.
VASCONCELOS, Andrea R.
SCAVONE, Cristoforo
RAMIRES, Paulo R.
BRUM, Patricia C.
Citação
INTERNATIONAL JOURNAL OF CARDIOLOGY, v.175, n.3, p.499-507, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Skeletal muscle wasting is associated with poor prognosis and increased mortality in heart failure (HF) patients. Glycolytic muscles are more susceptible to catabolic wasting than oxidative ones. This is particularly important in HF since glycolytic muscle wasting is associated with increased levels of reactive oxygen species (ROS). However, the main ROS sources involved in muscle redox imbalance in HF have not been characterized. Therefore, we hypothesized that NADPH oxidases would be hyperactivated in the plantaris muscle of infarcted rats, contributing to oxidative stress and hyperactivation of the ubiquitin-proteasome system(UPS), ultimately leading to atrophy. Methods: Rats were submitted to myocardial infarction (MI) or Sham surgery. Four weeks after surgery, MI and Sham groups underwent eight weeks of treatment with apocynin, a NADPH oxidase inhibitor, or placebo. NADPH oxidase activity, oxidative stress markers, NF-kappa B activity, p38 MAPK phosphorylation, mRNA and sarcolemmal protein levels of NADPH oxidase components, UPS activation and fiber cross-sectional area were assessed in the plantaris muscle. Results: The plantaris of MI rats displayed atrophy associated with increased Nox2 mRNA and sarcolemmal protein levels, NADPH oxidase activity, ROS production, lipid hydroperoxides levels, NF-kappa B activity, p38 MAPK phosphorylation and UPS activation. NADPH oxidase inhibition by apocynin prevented MI-induced skeletal muscle atrophy by reducing ROS production, NF-kappa B hyperactivation, p38 MAPK phosphorylation and proteasomal hyperactivity. Conclusion: Our data provide evidence for NADPH oxidase hyperactivation as an important source of ROS production leading to plantaris atrophy in heart failure rats, suggesting that this enzyme complex plays key role in skeletal muscle wasting in HF.
Palavras-chave
Heart failure, Skeletal muscle, Oxidative stress, NADPH oxidase, Atrophy
Referências
  1. Al Ghouleh I, 2011, FREE RADICAL BIO MED, V51, P1271, DOI 10.1016/j.freeradbiomed.2011.06.011
  2. Altenhofer S, 2014, ANTIOXID RE IN PRESS
  3. Bacurau AVN, 2009, J APPL PHYSIOL, V106, P1631, DOI 10.1152/japplphysiol.91067.2008
  4. Barbieri SS, 2004, FREE RADICAL BIO MED, V37, P156, DOI 10.1016/j.freeradbiomed.2004.04.020
  5. Baumer AT, 2007, CLIN EXP HYPERTENS, V29, P287, DOI 10.1080/10641960701500398
  6. Bedard K, 2007, PHYSIOL REV, V87, P245, DOI 10.1152/physrev.00044.2005
  7. Brown DI, 2009, FREE RADICAL BIO MED, V47, P1239, DOI 10.1016/j.freeradbiomed.2009.07.023
  8. Brum PC, 2014, EXP PHYSIOL, V99, P616, DOI 10.1113/expphysiol.2013.076844
  9. Brum PC, 2011, BRAZ J MED BIOL RES, V44, P827, DOI 10.1590/S0100-879X2011000900002
  10. Campos JC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052764
  11. Chen YR, 2014, CIRC RES, V114, P524, DOI 10.1161/CIRCRESAHA.114.300559
  12. Cheng GJ, 2001, GENE, V269, P131, DOI 10.1016/S0378-1119(01)00449-8
  13. Coirault C, 2007, AM J PHYSIOL-HEART C, V292, pH1009, DOI 10.1152/ajpheart.00438.2006
  14. Cunha TF, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041701
  15. Dahlman JM, 2012, METHODS MOL BIOL, V798, P505, DOI 10.1007/978-1-61779-343-1_30
  16. Fulster S, 2013, EUR HEART J, V34, P512, DOI 10.1093/eurheartj/ehs381
  17. Geng TY, 2011, AM J PATHOL, V178, P1738, DOI 10.1016/j.ajpath.2011.01.005
  18. Gielen S, 2012, CIRCULATION, V125, P2716, DOI 10.1161/CIRCULATIONAHA.111.047381
  19. Gielen S, 2003, J AM COLL CARDIOL, V42, P861, DOI 10.1016/S0735-1097(03)00848-9
  20. Hayashi T, 2005, DIABETES OBES METAB, V7, P334, DOI 10.1111/j.1463-1326.2004.00393.x
  21. HERMESLIMA M, 1995, FREE RADICAL BIO MED, V19, P271, DOI 10.1016/0891-5849(95)00020-X
  22. Heumuller S, 2008, HYPERTENSION, V51, P211, DOI 10.1161/HYPERTENSIONAHA.107.100214
  23. Jannig PR, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0085820
  24. Jaquet V, 2009, ANTIOXID REDOX SIGN, V11, P2535, DOI 10.1089/ARS.2009.2585
  25. Kriegenburg F, 2011, ANTIOXID REDOX SIGN, V15, P2265, DOI 10.1089/ars.2010.3590
  26. Laurindo FRM, 2002, METHOD ENZYMOL, V352, P432
  27. Li P, 2007, AM J PATHOL, V170, P599, DOI 10.2353/ajpath.2007.060505
  28. Li YP, 2003, AM J PHYSIOL-CELL PH, V285, pC806, DOI 10.1152/ajpcell.00129.2003
  29. Li YP, 1998, FASEB J, V12, P871
  30. Liberman M, 2008, ARTERIOSCL THROM VAS, V28, P463, DOI 10.1161/ATVBAHA.107.156745
  31. Linke A, 2005, CIRCULATION, V111, P1763, DOI 10.1161/01.CIR.0000165503.08661.E5
  32. Liu Y, 2010, MOL CELL BIOCHEM, V343, P143, DOI 10.1007/s11010-010-0508-4
  33. Marin-Garcia J, 2001, CARDIOVASC RES, V52, P103, DOI 10.1016/S0008-6363(01)00368-6
  34. Matsushima S, 2009, AM J PHYSIOL-HEART C, V297, pH409, DOI 10.1152/ajpheart.01332.2008
  35. Moreira JBN, 2013, J APPL PHYSIOL, V114, P1029, DOI 10.1152/japplphysiol.00760.2012
  36. Oelze M, 2011, J VASC RES, V48, P275, DOI 10.1159/000320627
  37. Ohta Y, 2011, AM J PHYSIOL-HEART C, V300, pH1637, DOI 10.1152/ajpheart.01185.2009
  38. Pechanova O, 2009, PHARMACOL REP, V61, P116
  39. Powers SK, 2010, EXP PHYSIOL, V95, P1, DOI 10.1113/expphysiol.2009.050526
  40. Schulze PC, 2003, BASIC RES CARDIOL, V98, P267, DOI 10.1007/s00395-003-0411-1
  41. Semprun-Prieto LC, 2011, BIOCHEM BIOPH RES CO, V409, P217, DOI 10.1016/j.bbrc.2011.04.122
  42. Simonyi Agnes, 2012, Front Biosci (Elite Ed), V4, P2183
  43. Solomon V, 1996, J BIOL CHEM, V271, P26690
  44. TEICHHOLZ LE, 1976, AM J CARDIOL, V37, P7, DOI 10.1016/0002-9149(76)90491-4
  45. Trueblood NA, 2005, AM J PHYSIOL-HEART C, V288, pH244, DOI 10.1152/ajpheart.00042.2004
  46. Whitehead NP, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015354
  47. Williams HC, 2007, J CARDIOVASC PHARM, V50, P9, DOI 10.1097/FJC.0b013e318063e820
  48. Wyke SM, 2004, BRIT J CANCER, V91, P1742, DOI 10.1038/sj.bjc.6602165
  49. Yu Z, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002086