Neuronal excitability level transition induced by electrical stimulation

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2014
Editora
SPRINGER HEIDELBERG
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, v.223, n.13, p.2913-2922, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In experimental studies, electrical stimulation (ES) has been applied to induce neuronal activity or to disrupt pathological patterns. Nevertheless, the underlying mechanisms of these activity pattern transitions are not clear. To study these phenomena, we simulated a model of the hippocampal region CA1. The computational simulations using different amplitude levels and duration of ES revealed three states of neuronal excitability: burst-firing mode, depolarization block and spreading depression wave. We used the bifurcation theory to analyse the interference of ES in the cellular excitability and the neuronal dynamics. Understanding this process would help to improve the ES techniques to control some neurological disorders.
Palavras-chave
Referências
  1. Bazhenov M, 2004, J NEUROPHYSIOL, V92, P1116, DOI 10.1152/jn.00529.2003
  2. Bianchi D, 2012, J COMPUT NEUROSCI, V33, P207, DOI 10.1007/s10827-012-0383-y
  3. Bikson M, 2001, J PHYSIOL-LONDON, V531, P181, DOI 10.1111/j.1469-7793.2001.0181j.x
  4. Bikson M, 2003, J NEUROPHYSIOL, V90, P2402, DOI 10.1152/jn.00467.2003
  5. Chiken Satomi, 2014, Front Syst Neurosci, V8, P33, DOI 10.3389/fnsys.2014.00033
  6. Cline C.H., 2004, C P ANN INT C IEEE E, V12, P890
  7. Dovzhenok A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042811
  8. Durand DM, 2010, PHILOS T R SOC B, V365, P2347, DOI 10.1098/rstb.2010.0050
  9. FERTZIGE.AP, 1970, EXP NEUROL, V26, P571, DOI 10.1016/0014-4886(70)90150-0
  10. Florence G, 2012, COMMUN NONLINEAR SCI, V17, P4700, DOI 10.1016/j.cnsns.2011.06.023
  11. Florence G, 2009, J THEOR BIOL, V258, P219, DOI 10.1016/j.jtbi.2009.01.032
  12. Frohlich F, 2006, PHYS REV E, V74, DOI 10.1103/PhysRevE.74.031922
  13. Frohlich F, 2008, NEUROSCIENTIST, V14, P422, DOI 10.1177/1073858408317955
  14. Golomb D, 2006, J NEUROPHYSIOL, V96, P1912, DOI 10.1152/jn.00205.2006
  15. Grace AA, 1997, TRENDS NEUROSCI, V20, P31, DOI 10.1016/S0166-2236(96)10064-3
  16. GRACE AA, 1992, J NEURAL TRANSM-GEN, P91
  17. GRAFSTEIN B, 1956, J NEUROPHYSIOL, V19, P154
  18. Hille B, 2001, IONIC CHANNELS EXCIT
  19. Izhikevich E.M., 2010, DYNAMICAL SYSTEMS NE
  20. Jensen MS, 1997, J NEUROPHYSIOL, V77, P1224
  21. Johnson MD, 2008, J NEUROPHYSIOL, V100, P2549, DOI 10.1152/jn.90372.2008
  22. Johnson MD, 2008, NEUROTHERAPEUTICS, V5, P294, DOI 10.1016/j.nurt.2008.01.010
  23. Kager H, 2007, J COMPUT NEUROSCI, V22, P105, DOI 10.1007/s10827-006-0001-y
  24. Kager H, 2000, J NEUROPHYSIOL, V84, P495
  25. Kager H, 2002, J NEUROPHYSIOL, V88, P2700, DOI 10.1152/jn.00237.2002
  26. Komek K, 2012, EUR J NEUROSCI, V36, P2146, DOI 10.1111/j.1460-9568.2012.08071.x
  27. MCCOWN TJ, 1984, EXP NEUROL, V86, P527, DOI 10.1016/0014-4886(84)90087-6
  28. Muller M, 2000, J NEUROPHYSIOL, V83, P735
  29. Oyehaug L, 2012, J COMPUT NEUROSCI, V32, P147, DOI 10.1007/s10827-011-0345-9
  30. Park EH, 2006, J THEOR BIOL, V238, P666, DOI 10.1016/j.jtbi.2005.06.015
  31. Rubin JE, 2004, J COMPUT NEUROSCI, V16, P211, DOI 10.1023/B:JCNS.0000025686.47117.67
  32. Somjen GG, 2008, J COMPUT NEUROSCI, V25, P349, DOI 10.1007/s10827-008-0083-9
  33. Valenti O, 2011, J NEUROSCI, V31, P12330, DOI 10.1523/JNEUROSCI.2808-11.2011
  34. Walz W, 2000, NEUROCHEM INT, V36, P291, DOI 10.1016/S0197-0186(99)00137-0