Spatial dynamics of a population with stage-dependent diffusion

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2015
Editora
ELSEVIER SCIENCE BV
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
COUTINHO, R. M.
KRAENKEL, R. A.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, v.22, n.1-3, p.605-610, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
We explore the spatial dynamics of a population whose individuals go through life stages with very different dispersal capacities. We model it through a system of partial differential equations of the reaction-diffusion kind, with nonlinear diffusion terms that may depend on population density and on the stage. This model includes a few key biological ingredients: growth and saturation, life stage structure, small population effects, and diffusion dependent on the stage. In particular, we consider that adults exhibit two distinct classes: one highly mobile and the other less mobile but with higher fecundity rate, and the development of juveniles into one or the other depends on population density. We parametrize the model with estimated parameters of an insect species, the brown planthopper. We focus on a situation akin to an invasion of the species in a new habitat and find that the front of invasion is led by the most mobile adult class. We also show that the trade-off between dispersal and fecundity leads to invasion speed attaining its maximum at an intermediate value of the diffusion coefficient of the most mobile class.
Palavras-chave
Reaction-diffusion equations, Invasion speed, Stage structure, Wing dimorphism
Referências
  1. Aguirre MA, 2002, PHYS REV E, V66, DOI 10.1103/PhysRevE.66.041908
  2. Cantrell R.S., 2003, SPATIAL ECOLOGY VIA
  3. Cease AJ, 2010, J INSECT PHYSIOL, V56, P926, DOI 10.1016/j.jinsphys.2010.05.020
  4. Clerc MG, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.056217
  5. Courchamp F, 2009, ALLEE EFFECTS ECOLOG
  6. Dennis B., 1989, Natural Resource Modeling, V3, P481
  7. Fauvergue X, 2012, ENTOMOL EXP APPL, V146, P79
  8. Ferreira SC, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.021907
  9. Garlick MJ, 2011, B MATH BIOL, V73, P2088, DOI 10.1007/s11538-010-9612-6
  10. Kolmogorov A. N., 1937, MOSCOW U B MATH, V1, P1
  11. Kumar N, 2009, PHYS REV E, V79, DOI 10.1103/PhysRevE.79.041902
  12. MAY RM, 1976, NATURE, V261, P459, DOI 10.1038/261459a0
  13. Misra V, 1979, BROWN PLANTHOPPER TH
  14. Murray J.D., 2002, MATH BIOL INTRO
  15. Okubo A, 2001, DIFFUSION ECOLOGICAL
  16. Simpson SJ, 2012, CURR BIOL, V21, P738
  17. Turchin P, 1998, QUANTITATIVE ANAL MO