Aldehydic load and aldehyde dehydrogenase 2 profile during the progression of post-myocardial infarction cardiomyopathy: Benefits of Alda-1

Carregando...
Imagem de Miniatura
Citações na Scopus
52
Tipo de produção
article
Data de publicação
2015
Editora
ELSEVIER IRELAND LTD
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
GOMES, Katia M. S.
BECHARA, Luiz R. G.
LIMA, Vanessa M.
RIBEIRO, Marcio A. C.
CAMPOS, Juliane C.
KOWALTOWSKI, Alicia J.
MOCHLY-ROSEN, Daria
FERREIRA, Julio C. B.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
INTERNATIONAL JOURNAL OF CARDIOLOGY, v.179, p.129-138, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background/objectives: We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy are unknown and should be established to determine the optimal time window for drug treatment. Methods: Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats. Results: We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24 h after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats. Conclusion: Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction cardiomyopathy.
Palavras-chave
Myocardial infarction, 4-Hydroxynonenal, Oxidative stress, Bioenergetics, Aldehyde dehydrogenase 2
Referências
  1. Bayeva M, 2012, J AM COLL CARDIOL, V61, P599
  2. BOLLI R, 1989, P NATL ACAD SCI USA, V86, P4695, DOI 10.1073/pnas.86.12.4695
  3. Budas GR, 2010, J MOL CELL CARDIOL, V48, P757, DOI 10.1016/j.yjmcc.2009.10.030
  4. Bueno CR, 2010, J APPL PHYSIOL, V109, P702, DOI 10.1152/japplphysiol.00281.2010
  5. Bulteau AL, 2001, J BIOL CHEM, V276, P30057, DOI 10.1074/jbc.M100142200
  6. Campos JC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052764
  7. Campos JC, 2013, FOOD CHEM TOXICOL, V62, P107, DOI 10.1016/j.fct.2013.08.035
  8. Cancherini DV, 2007, CARDIOVASC RES, V73, P720, DOI 10.1016/j.cardiores.2006.11.035
  9. Chen CH, 2008, SCIENCE, V321, P1493, DOI 10.1126/science.1158554
  10. Chen CH, 2014, PHYSIOL REV, V94, P1, DOI 10.1152/physrev.00017.2013
  11. Disatnik MH, 2013, J AM HEART ASSOC, V2, DOI 10.1161/JAHA.113.000461
  12. Endo J, 2009, CIRC RES, V105, P1118, DOI 10.1161/CIRCRESAHA.109.206607
  13. Faerber G, 2011, J THORAC CARDIOV SUR, V141, P492, DOI 10.1016/j.jtcvs.2010.03.029
  14. Ferreira JCB, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033175
  15. Ferreira JCB, 2011, J MOL CELL CARDIOL, V51, P980, DOI 10.1016/j.yjmcc.2011.08.025
  16. Ferreira JCB, 2012, CIRC J, V76, P15, DOI 10.1253/circj.CJ-11-1133
  17. Figueira TR, 2013, ANTIOXID REDOX SIGN, V18, P2029, DOI 10.1089/ars.2012.4729
  18. Gheorghiade M, 1998, CIRCULATION, V97, P282
  19. Gomes KMS, 2014, CARDIOVASC RES, V103, P498, DOI 10.1093/cvr/cvu125
  20. HERMESLIMA M, 1995, FREE RADICAL BIO MED, V19, P271, DOI 10.1016/0891-5849(95)00020-X
  21. Ide T, 2001, CIRC RES, V88, P529
  22. JOHNS TNP, 1954, ANN SURG, V140, P675, DOI 10.1097/00000658-195411000-00006
  23. Ma H, 2009, J AM COLL CARDIOL, V54, P2187, DOI 10.1016/j.jacc.2009.04.100
  24. Ma H, 2010, J MOL CELL CARDIOL, V49, P322, DOI 10.1016/j.yjmcc.2010.03.017
  25. Mak S, 2000, J CARD FAIL, V6, P108, DOI 10.1054/jcaf.2000.7272
  26. Nakamura K, 2002, CIRCULATION, V105, P2867, DOI 10.1161/01.CIR.0000018605.14470.DD
  27. Nakamura K, 2005, J CARD FAIL, V11, P117, DOI 10.1016/j.cardfail.2004.05.005
  28. Palaniyandi SS, 2011, J CELL MOL MED, V15, P1769, DOI 10.1111/j.1582-4934.2010.01174.x
  29. Palaniyandi S.S., 2010, DRUG DISCOV TODAY DI, V7, pe95, DOI 10.1016/j.ddmec.2010.07.002
  30. Petersen DR, 2004, FREE RADICAL BIO MED, V37, P937, DOI 10.1016/j.freeradbiomed.2004.06.012
  31. Rahman I, 2006, NAT PROTOC, V1, P3159, DOI 10.1038/nprot.2006.378
  32. Roger VL, 2012, CIRCULATION, V125, pE2, DOI 10.1161/CIR.0b013e31823ac046
  33. Sun LH, 2011, SCI TRANSL MED, V3, DOI 10.1126/scitranslmed.3002067
  34. Tahara EB, 2009, FREE RADICAL BIO MED, V46, P1283, DOI 10.1016/j.freeradbiomed.2009.02.008
  35. Yogalingam G, 2013, J BIOL CHEM, V288, P18947, DOI 10.1074/jbc.M113.466870