Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency

Carregando...
Imagem de Miniatura
Citações na Scopus
34
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER LONDON LTD
Autores
OLIVEIRA, Tabata Santos de
SERRA, Andrey Jorge
MANCHINI, Martha Trindade
CARVALHO, Paulo de Tarso Camillo de
ANTUNES, Daniela Espindola
BOCALINI, Danilo Sales
TUCCI, Paulo Jos Ferreira
SILVA JR., Jose Antonio
Citação
LASERS IN MEDICAL SCIENCE, v.30, n.1, p.217-223, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Low-level laser therapy (LLLT) has been shown to increase the proliferation of several cell types. We evaluated the effects of LLLT on adhesion, proliferation, and gene expression of vascular endothelial growth factor (VEGF) and type 2 receptor of VEGF (VEGFR2) at mesenchymal stem cells (MSCs) from human (hMSCs) and rat (rMSCs) adipose tissues on nutritional deficiencies. A dose-response curve was performed with cells treated with laser Ga-Al-As (660 nm, 30 mW) at energy of 0.7 to 9 J. Cell adhesion and proliferation were quantified 20, 40, and 60 min after LLLT and 24, 72, and 120 h after cultivation. Gene expression was verified by RT-PCR after 2 h of LLLT. A minor nutritional support caused a significant decrease in proliferation and adhesion of hMSCs and rMSCs. However, at the lowest LLLT dose (0.7 J), we observed a higher proliferation in hMSCs at standard condition shortly after irradiation (24 h). Adhesion was higher in hMSCs cultivated in controlled conditions at higher LLLT doses (3 and 9 J), and rMSCs show a reduction in the adhesion on 1.5 to 9 J. On nutritional deprivation, a 9 J dose was shown to reduce proliferation with 24 h and adhesion to all culture times in rMSCs. VEGF and VEGFR2 were increased after LLLT in both cell types. However, hMSCs under nutritional deprivation showed higher expression of VEGF and its receptor after irradiation with other laser doses. In conclusion, LLLT on human and rat MSCs might upregulate VEGF messenger RNA (mRNA) expression and modulate cell adhesion and proliferation distinctively.
Palavras-chave
Cell adhesion, Cell proliferation, Low-level laser therapy, Mesenchymal stem cell, VEGF
Referências
  1. Anwer AG, 2012, LASER SURG MED, V44, P769, DOI 10.1002/lsm.22083
  2. Bai XW, 2010, BIOCHEM BIOPH RES CO, V401, P321, DOI 10.1016/j.bbrc.2010.09.012
  3. Bassaneze V, 2010, STEM CELLS DEV, V19, P371, DOI 10.1089/scd.2009.0195
  4. Blande IS, 2009, TRANSFUSION, V49, P2680, DOI 10.1111/j.1537-2995.2009.02346.x
  5. CAPLAN AI, 1991, J ORTHOPAED RES, V9, P641, DOI 10.1002/jor.1100090504
  6. Carrancio S, 2008, EXP HEMATOL, V36, P1014, DOI 10.1016/j.exphem.2008.03.012
  7. Colter DC, 2001, P NATL ACAD SCI USA, V98, P7841, DOI 10.1073/pnas.141221698
  8. Danoviz ME, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012077
  9. Danoviz ME, 2011, STEM CELLS DEV, V20, P661, DOI 10.1089/scd.2010.0231
  10. Dominici M, 2006, CYTOTHERAPY, V8, P315, DOI 10.1080/14653240600855905
  11. Eduardo FD, 2008, LASER SURG MED, V40, P433, DOI 10.1002/lsm.20646
  12. Ferraresi C, 2012, PHOTONICS LASERS MED, V1, P267
  13. Ferreira MPP, 2009, PHOTOMED LASER SURG, V27, P901, DOI 10.1089/pho.2008.2427
  14. Gimble JM, 2007, CIRC RES, V100, P1249, DOI 10.1161/01.RES.0000265074.83288.09
  15. Gronthos S, 2000, P NATL ACAD SCI USA, V97, P13625, DOI 10.1073/pnas.240309797
  16. Hou JF, 2008, LASER SURG MED, V40, P726, DOI 10.1002/lsm.20709
  17. Kim H, 2012, J DERMATOL SCI, V68, P149, DOI 10.1016/j.jdermsci.2012.09.013
  18. Kuznetsov SA, 1997, J BONE MINER RES, V12, P1335, DOI 10.1359/jbmr.1997.12.9.1335
  19. Loster K, 2000, MICRON, V31, P41, DOI 10.1016/S0968-4328(99)00062-1
  20. Mesquita-Ferrari RA, 2011, INDIAN J EXP BIOL, V49, P423
  21. Mirsky N, 2002, ANTIOXID REDOX SIGN, V4, P785, DOI 10.1089/152308602760598936
  22. MOSMANN T, 1983, J IMMUNOL METHODS, V65, P55, DOI 10.1016/0022-1759(83)90303-4
  23. Mummery CL, 2010, SCI TRANSL MED, V2, P27
  24. Mvula B, 2010, LASER MED SCI, V25, P33, DOI 10.1007/s10103-008-0636-1
  25. Mvula B, 2008, LASER MED SCI, V23, P277, DOI 10.1007/s10103-007-0479-1
  26. Secco M, 2008, STEM CELLS, V26, P146, DOI 10.1634/stemcells.2007-0381
  27. Stocum DL, 2001, WOUND REPAIR REGEN, V9, P429, DOI 10.1046/j.1524-475x.2001.00429.x
  28. Tuby H, 2011, LASER SURG MED, V43, P401, DOI 10.1002/lsm.21063
  29. Tuby H, 2007, LASER SURG MED, V39, P373, DOI 10.1002/lsm.20492
  30. Tuby H, 2006, LASER SURG MED, V38, P682, DOI 10.1002/lsm.20377
  31. Tuby H, 2009, PHOTOMED LASER SURG, V27, P227, DOI 10.1089/pho.2008.2272
  32. Wagner W, 2007, STEM CELL REV, V3, P239, DOI 10.1007/s12015-007-9001-1
  33. Zhang H, 2010, J CELL MOL MED, V14, P1975, DOI 10.1111/j.1582-4934.2009.00886.x
  34. Zuk PA, 2002, MOL BIOL CELL, V13, P4279, DOI 10.1091/mbc.E02-02-0105