Modeling the exergy behavior of human body

Show simple item record

dc.contributor Sistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.author MADY, Carlos Eduardo Keutenedjian
FERREIRA, Mauricio Silva
YANAGIHARA, Jurandir Itizo
SALDIVA, Paulo Hilario Nascimento FMUSP-HC
OLIVEIRA JUNIOR, Silvio de
dc.date.issued 2012
dc.identifier.citation ENERGY, v.45, n.1, p.546-553, 2012
dc.identifier.issn 0360-5442
dc.identifier.uri http://observatorio.fm.usp.br/handle/OPI/937
dc.description.abstract Exergy analysis is applied to assess the energy conversion processes that take place in the human body, aiming at developing indicators of health and performance based on the concepts of exergy destroyed rate and exergy efficiency. The thermal behavior of the human body is simulated by a model composed of 15 cylinders with elliptical cross section representing: head, neck, trunk, arms, forearms, hands, thighs, legs, and feet. For each, a combination of tissues is considered. The energy equation is solved for each cylinder, being possible to obtain transitory response from the body due to a variation in environmental conditions. With this model, it is possible to obtain heat and mass flow rates to the environment due to radiation, convection, evaporation and respiration. The exergy balances provide the exergy variation due to heat and mass exchange over the body, and the exergy variation over time for each compartments tissue and blood, the sum of which leads to the total variation of the body. Results indicate that exergy destroyed and exergy efficiency decrease over lifespan and the human body is more efficient and destroys less exergy in lower relative humidities and higher temperatures.
dc.description.sponsorship · FAPESP (the State of Sao Paulo Research Foundation) [09/17578-0]
· CNPq (National Research Council) [306505/2009-6]
dc.language.iso eng
dc.publisher PERGAMON-ELSEVIER SCIENCE LTD
dc.relation.ispartof Energy
dc.rights restrictedAccess
dc.subject Human body behavior; Exergy analysis; Exergy efficiency
dc.subject.other entropy generation; thermal comfort; growth
dc.title Modeling the exergy behavior of human body
dc.type article
dc.rights.holder Copyright PERGAMON-ELSEVIER SCIENCE LTD
dc.description.group LIM/05
dc.identifier.doi 10.1016/j.energy.2012.02.064
dc.type.category original article
dc.type.version publishedVersion
hcfmusp.author SALDIVA, Paulo Hilario Nascimento:FM:MPT
hcfmusp.author.external · MADY, Carlos Eduardo Keutenedjian:Univ Sao Paulo, Polytech Sch, Dept Mech Engn, BR-05508900 Sao Paulo, Brazil
· FERREIRA, Mauricio Silva:Univ Sao Paulo, Polytech Sch, Dept Mech Engn, BR-05508900 Sao Paulo, Brazil
· YANAGIHARA, Jurandir Itizo:Univ Sao Paulo, Polytech Sch, Dept Mech Engn, BR-05508900 Sao Paulo, Brazil
· OLIVEIRA JUNIOR, Silvio de:Univ Sao Paulo, Polytech Sch, Dept Mech Engn, BR-05508900 Sao Paulo, Brazil
hcfmusp.origem.id WOS:000309243700062
hcfmusp.origem.id 2-s2.0-84865426344
hcfmusp.publisher.city OXFORD
hcfmusp.publisher.country ENGLAND
hcfmusp.relation.reference · Albuquerque-Neto C, 2008, J BRAZ SOC MECH SCI, V30, P253
· Albuquerque-Neto C, 2010, INT J THERMODYN, V13, P105
· AOKI I, 1990, J THEOR BIOL, V145, P421, DOI 10.1016/S0022-5193(05)80120-1
· AOKI I, 1989, J THEOR BIOL, V141, P11, DOI 10.1016/S0022-5193(89)80004-9
· AOKI I, 1987, B MATH BIOL, V49, P321, DOI 10.1007/BF02460123
· AOKI I, 1991, J THEOR BIOL, V150, P215, DOI 10.1016/S0022-5193(05)80333-9
· ASHRAE: American Society of Heating Refrigerating and Air-Conditioning Engineers, 1993, HDB FUND, P1
· BALMER RT, 1982, CHEM ENG COMMUN, V17, P171, DOI 10.1080/00986448208911623
· BATATO M, 1990, ENTROPIE, V26, P120
· Dear JD, 1997, INT J BIOMETEOROL, V40, P141
· Diener JRC, 1997, AMB REV ASS MED BRAS, V43, P245
· Ferreira MS, 2009, INT COMMUN HEAT MASS, V36, P718, DOI 10.1016/j.icheatmasstransfer.2009.03.010
· Harris JA, 1918, P NATL ACAD SCI USA, V4, P370, DOI 10.1073/pnas.4.12.370
· Luo LF, 2009, FRONT PHYS CHINA, V4, P122, DOI 10.1007/s11467-009-0007-9
· PENNES HH, 1948, J APPL PHYSIOL, V1, P93
· Prek M, 2005, INT J HEAT MASS TRAN, V48, P731, DOI 10.1016/j.ijheatmasstransfer.2004.09.006
· Prek M, 2006, ENERGY, V31, P732, DOI 10.1016/j.energy.2005.05.001
· Prek M, 2010, INT J HEAT MASS TRAN, V48, P731
· PRIGOGINE I, 1946, EXPERIENTIA, V2, P451, DOI 10.1007/BF02153597
· Rahman MA, 2007, THERM SCI, V11, P75, DOI 10.2298/TSCI0701075R
· Schrodinger E., 1944, WHAT IS LIFE PHYS AS
· Silva C, 2008, ENTROPY, V10, P100, DOI 10.3390/entropy-e10020100
· Silva C, 2009, J THERMODYN, V2009, P1
· STOWARD PJ, 1962, NATURE, V194, P977, DOI 10.1038/194977a0
· Wissler EH., 1985, HEAT TRANSFER MED BI, P325
· ZOTIN AI, 1967, J THEOR BIOL, V17, P57, DOI 10.1016/0022-5193(67)90020-3
dc.description.index WoS
hcfmusp.citation.scopus 35
hcfmusp.citation.wos 27
hcfmusp.affiliation.country Brasil


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace



Browse

My Account

Statistics