Eugenol attenuates pulmonary damage induced by diesel exhaust particles

Carregando...
Imagem de Miniatura
Citações na Scopus
34
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER PHYSIOLOGICAL SOC
Autores
ZIN, Walter A.
SILVA, Ana G. L. S.
MAGALHAES, Clarissa B.
CARVALHO, Giovanna M. C.
RIVA, Douglas R.
LIMA, Crystianne C.
LEAL-CARDOSO, Jose H.
TAKIYA, Christina M.
VALENCA, Samuel S.
Citação
JOURNAL OF APPLIED PHYSIOLOGY, v.112, n.5, p.911-917, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Zin WA, Silva AG, Magalhaes CB, Carvalho GM, Riva DR, Lima CC, Leal-Cardoso JH, Takiya CM, Valen a SS, Saldiva PH, Faffe DS. Eugenol attenuates pulmonary damage induced by diesel exhaust particles. J Appl Physiol 112: 911-917, 2012. First published December 22, 2011; doi: 10.1152/japplphysiol.00764.2011.-Environmentally relevant doses of inhaled diesel particles elicit pulmonary inflammation and impair lung mechanics. Eugenol, a methoxyphenol component of clove oil, presents in vitro and in vivo anti-inflammatory and antioxidant properties. Our aim was to examine a possible protective role of eugenol against lung injuries induced by diesel particles. Male BALB/c mice were divided into four groups. Mice received saline (10 mu l in; CTRL group) or 15 mu g of diesel particles DEP (15 mu g in; DIE and DEUG groups). After 1 h, mice received saline (10 mu l; CTRL and DIE groups) or eugenol (164 mg/kg; EUG and DEUG group) by gavage. Twenty-four hours after gavage, pulmonary resistive (Delta P1), viscoelastic (Delta P2) and total (Delta Ptot) pressures, static elastance (Est), and viscoelastic component of elastance (Delta E) were measured. We also determined the fraction areas of normal and collapsed alveoli, amounts of polymorpho- (PMN) and mononuclear cells in lung parenchyma, apoptosis, and oxidative stress. Est, Delta P2, Delta Ptot, and Delta E were significantly higher in the DIE than in the other groups. DIE also showed significantly more PMN, airspace collapse, and apoptosis than the other groups. However, no beneficial effect on lipid peroxidation was observed in DEUG group. In conclusion, eugenol avoided changes in lung mechanics, pulmonary inflammation, and alveolar collapse elicited by diesel particles. It attenuated the activation signal of caspase-3 by DEP, but apoptosis evaluated by TUNEL was avoided. Finally, it could not avoid oxidative stress as indicated by malondialdehyde.
Palavras-chave
apoptosis, diesel exhaust particles, eugenol, inflammation, lung mechanics
Referências
  1. Aebi H., 1984, METHOD ENZYMOL, V105, P121, DOI 10.1016/S0076-6879(84)05016-3
  2. BATES JHT, 1988, J APPL PHYSIOL, V65, P408
  3. BATES JHT, 1985, J APPL PHYSIOL, V58, P1840
  4. BRIDGEMAN MME, 1994, THORAX, V49, P670, DOI 10.1136/thx.49.7.670
  5. CHAUHAN SS, 1991, BIOCHEM PHARMACOL, V41, P191, DOI 10.1016/0006-2952(91)90476-L
  6. Donaldson K, 2001, OCCUP ENVIRON MED, V58, P211, DOI 10.1136/oem.58.3.211
  7. DRAPER HH, 1990, METHOD ENZYMOL, V186, P421
  8. Dye JA, 2001, ENVIRON HEALTH PERSP, V109, P395, DOI 10.2307/3434787
  9. Faffe DS, 2009, PHYSIOL REV, V89, P759, DOI 10.1152/physrev.00019.2007
  10. Gowdy K, 2008, TOXICOL APPL PHARM, V229, P310, DOI 10.1016/j.taap.2008.01.040
  11. Guenette SA, 2007, EUR J PHARMACOL, V562, P60, DOI 10.1016/j.ejphar.2007.01.044
  12. Hiura TS, 1999, J IMMUNOL, V163, P5582
  13. Laks DM, 2008, INHAL TOXICOL, V11, P1037
  14. Li XY, 1996, THORAX, V51, P1216, DOI 10.1136/thx.51.12.1216
  15. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  16. Magalhaes CB, 2010, J APPL PHYSIOL, V108, P845, DOI 10.1152/japplphysiol.00560.2009
  17. Marrades RM, 1997, AM J RESP CRIT CARE, V156, P425
  18. MEISTER A, 1983, ANNU REV BIOCHEM, V52, P711, DOI 10.1146/annurev.bi.52.070183.003431
  19. Muller B, 1998, EUR J CLIN INVEST, V28, P762
  20. Murakami Y, 2003, BIOCHEM PHARMACOL, V66, P1061, DOI 10.1016/S0006-2952(03)00419-2
  21. Murakami Y, 2005, ARCH BIOCHEM BIOPHYS, V434, P326, DOI 10.1016/j.abb.2004.11.013
  22. Nel AE, 1998, J ALLERGY CLIN IMMUN, V102, P539, DOI 10.1016/S0091-6749(98)70269-6
  23. Nemmar A, 2011, TOXICOLOGY, V285, P39, DOI 10.1016/j.tox.2011.03.018
  24. Ng D, 1998, J IMMUNOL, V161, P942
  25. OPDYKE DLJ, 1975, FOOD COSMET TOXICOL, V13, P545, DOI 10.1016/0015-6264(75)90011-5
  26. Park JYK, 1996, P NATL ACAD SCI USA, V93, P2322, DOI 10.1073/pnas.93.6.2322
  27. Park S, 2006, TOXICOL IN VITRO, V20, P851, DOI 10.1016/j.tiv.2005.12.004
  28. Rueff-Barroso CR, 2010, MED SCI MONITOR, V16, P218
  29. Ryter SW, 2007, ANTIOXID REDOX SIGN, V9, P49, DOI 10.1089/ars.2007.9.49
  30. Sagai M, 1996, FREE RADICAL BIO MED, V21, P199, DOI 10.1016/0891-5849(96)00032-9
  31. SALDIVA PHN, 1992, J APPL PHYSIOL, V72, P302
  32. Saldiva PHN, 2002, AM J RESP CRIT CARE, V165, P1610, DOI 10.1164/rccm.2106102
  33. SCHUETZLE D, 1983, ENVIRON HEALTH PERSP, V47, P65, DOI 10.2307/3429500
  34. Sorensen M, 2005, CANCER EPIDEM BIOMAR, V14, P1340, DOI 10.1158/1055-9965.EPI-04-0899
  35. Steerenberg PA, 2004, INHAL TOXICOL, V16, P311, DOI 10.1080/08958370490428436
  36. Steinberg FM, 1998, AM J CLIN NUTR, V68, P319
  37. Suzuki T, 2010, PART FIBRE TOXICOL, V7, DOI 10.1186/1743-8977-7-7
  38. Takano H, 1997, AM J RESP CRIT CARE, V156, P36
  39. Takayoshi K, 2007, J OCCUP HEALTH, V49, P88
  40. Tzamkiozis T, 2010, INHAL TOXICOL, V22, P59, DOI 10.3109/08958378.2010.519408
  41. WEIBEL ER, 1966, J CELL BIOL, V30, P23, DOI 10.1083/jcb.30.1.23